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WHAT IS MACHINE LEARNING

“Machine learning is the science of getting computers to act without being explicitly
programmed.”

— Andrew Ng, Stanford University

Taking advantage of computational power



Roadmap

Survey Results
PICO for ML Papers

Discussing Barriers to ML



Survey Results

What best describes your general exposure to machine learning? (Select one)

| am actively deploying machine

| am building things in house.

I've read/heard about it

Have been solicited by vendors, but
12.5% | am actively soliciting for machine




Survey Results

How would you characterize your enthusiasm towards Artificial Intelligence
(Al) and Machine Learning (ML)? (Select one)

20 responses

11 (55%)

6 (30%)

3 (15%)




Survey Results

In an ideal world, who in your organization should be most responsible for
decisions surrounding ML algorithms in the clinical setting? (Select one)

20 responses

® cMmIo
@® An Assistant CMIO

® clo
® cMvo
‘ @ cEO

@ Chief analytics officer

@ An outside contractor/consultant
@ A clinical champion

12V




Survey Results

How comfortable do you feel when evaluating ML applications?

20 responses

6
(30%)

4
(20%)
3
(15%)
2
(10%)
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iInformatics fellow with a CS
degree wants to predict
readmissions in patients
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will most likely be a
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Supervised vs Unsupervised Learning

Supervised - You supply the “right answers” to the model and it learns how to
come up these answers.

Unsupervised - There are no right answers and the models are trying find
“patterns” in the data.

Reinforcement - Train the model by “rewarding” it for correct actions

Example: training a robot to grab a ball, training a computer to play chess



A first question

Your ambitious first year informatics fellow with a CS degree wants to predict
readmissions in patients getting discharged from the hospital.

The model he builds will most likely be a model.

a) Supervised - Your fellow will be labeling which patients count as
readmissions.

b) Unsupervised
c) Perfect
d) Imaginary
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PICO for Machine Learning -
Patient/Problem

e Patient Population
o Does this model apply to my patient population?
m Example: MANY models are build off of the publicly available MIMIC dataset (ICU data
from a large hospital in Boston)
e Problem

o For supervised models: How much do | trust the labelling used to build the model?
m Example: Some predictive models for sepsis use ICD10 sepsis codes as their “truth”
label (this is only 50% sensitive)



A Real Paper!

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks

Pranav Rajpurkar’ PRANAVSR @CS.STANFORD.EDU
Awni Y. Hannun" AWNI@CS.STANFORD.EDU
Masoumeh Haghpanahi MHAGHPANAHI@IRHYTHMTECH.COM
Codie Bourn CBOURN@IRHYTHMTECH.COM
Andrew Y. Ng ANG @CS.STANFORD.EDU




A Real Paper!

How is the “true arrhythmia” being
determined in the training set:

Testing a. Asingle cardiologist read in the EHR

We collect a test set of 336 records from 328 unique b. Majority from 6 different boarded
patients. For the test set, ground truth annotations for cardiologists

each record were obtained by a committee of three board-
certified cardiologists; there are three committees respon- c. ICD10 codes

sible for different splits of the test set. The cardiologists d. Consensus committee of 3 boarded
discussed each individual record as a group and came to a . :

consensus labeling. For each record i: lhcptest set we also cardiologists
collect 6 individual annotations from cardiologists not par- e. Medical Students
ticipating in the group. This is used to assess performance f.  Magic 8 ball

of the model compared to an individual cardiologist.
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A Real Paper!

How is the “true arrhythmia” being
determined in the training set:

Testing a. Asingle cardiologist read in the EHR

We collect a test set of 336 records from 328 unique b. Majority from 6 different boarded
patients.  For the test set, ground truth annotations for cardiologists
each record were obtained by a committee of three board-

certified cardiologists; there are three committees respon- c. ICD10 codes
gIsts d. Consensus committee of 3 boarded
discussed each individual record as a group and came to a . .
consensus labeling. For each record in the test set we also cardHOIOQIStS
collect 6 individual annotations from cardiologists not par- e. Medical Students
ticipating in the group. This is used to assess performance f. Magic 8 ball

of the model compared to an individual cardiologist.
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PICO for Machine Learning - Intervention

e Actionable Insight
o  Will knowing a model’s predictions change provider/system behavior
m Example: Showing mortality predictions to your discharging doctors.
e Integration with workflow

o Applications need defined ROl and incorporation into workflow.
m Example: Showing mortality predictions in the discharge activity that then
auto-populate a care transitions referral to reduce readmissions.
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PICO for Machine Learning - Comparison

e Static vs Dynamic
o  Will the model change over time or not?
m Static - Easier to implement, but often degrades over time.
m Dynamic - Much harder to implement because this needs large data feeds.
m Consider review periods: le every 2-3 years (no consensus)
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PICO for Machine Learning - Outcomes

e Binary Classifiers (le sepsis vs no sepsis)
o AUC
o  Sensitivity/Specificity
o F1 statistic
o Accuracy
e Non-binary Classifiers (le low, mid, high risk for PE)
o Accuracy
o Kappa
e Regressions (le what is the % chance of readmission)
o R-squared
o MSE

e Which metric(s) do you choose?
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WHAT ABOUT SEPSIS?

BM) Open Multicentre validation of a sepsis
prediction algorithm using only vital
sign data in the emergency department,

general ward and ICU

Qingging Mao,! Melissa Jay,! Jana L Hoffman,' Jacob Calvert,’

Receiver Operator Curve for severe sepsis (AUC: 0.87)

Sensitivity ~ 80%, Specificity ~80%
Assuming prevalence ~10%

PPV:31%




APPLE WATCH

96% sensitive, 98% specific — sounds great!

Prevalence of afib for population under 55 = 0.1%

What do you think is positive predictive value?

a) 1%

b) 50/ 76 BPM 10:09
¢) 20% -
d) 50%

e) 90% 22sec

It helps to rest your
arms on a table or
your legs.
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population which has an Afib
prevalence of 0.1%.
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APPLE WATCH

96% sensitive, 98% specific — sounds great!

Prevalence of afib for population under 55 = 0.1%

What do you think is positive predictive value?

1%
76 BPM 10:09
5% ‘
l
Se
90% .

It helps to rest your
arms on a table or
your legs.

Overall afib prevalence (21+ yrs old): ~1%
Overall PPV: 33%




PICO for Machine Learning - Outcomes

e Binary Classifiers
o AUC
o  Sensitivity/Specificity
o F1 statistic
o Accuracy
e Non-binary Classifiers
o Accuracy
o Kappa
e Regressions
o R-squared
o MSE

e Which do you choose? It depends



PICO for Machine Learning - Outcomes

The right statistic for you depends on your population, use case, and preferences

o In general:
m Asking for more sensitivity will hurt positive predictive value and specificity.
m Consider optimizing something like an F1 score (which penalizes false positives).
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Survey Results

Have you attempted or successfully deployed any machine learning
projects? (Select one)

20 responses




What barriers have you faced in implementing ML solutions (Select all that
apply)

20 responses

Don’t have infrastructure to

0,
support ap... 11 (55%)

6 (30%)

Too expensive

No clearly relevant solutions 6 (30%)
Didn’t have expected outcome
after impl...

organizational ignorance: either

0,
senior... 13%)

1 (5%)
many complex issues 1(5%)

2.5




Thank you!



