

AMDIS Literature Review June 20, 2019

Colin Banas, MD, MSHA

CMIO x 10 years Associate Professor of Internal Medicine <u>colinbanas@gmail.com</u>

@colin_banas

Karl Kochendorfer, MD, FAAFP

Assistant Vice Chancellor Chief Health Information Officer Associate Chief Medical Officer Associate Professor of Family Medicine

AGENDA

- What was done before
- How to do an informatics literature review and search
 - The Right Way
 - The Banas Way
- Interesting trends
- Altered methodology
- Our favorite studies and news updates

DISCLOSURE OF CONFLICTS OF INTEREST MedSocket Karl Kochendorfer, MD, FAAFP Founder and CMO

Karl Kochendorfer, MD

Executive Coaching and Consulting Services

However, none of the slides presented today are related to these roles or systems.

HELP WITH LITERATURE REVIEW

Its easy! I published my methodology

BILL'S METHODOLOGY IN 2017

Clinical Informatics OR

appl clin inform OR appl med inform OR bmc med inform decis mak OR comput inform nurs OR int j med inform OR j amia OR j clin bioinforma OR j innov health inform OR j med internet res OR j med syst OR med inform OR "Medical Informatics" [Mesh] OR "Medical Informatics Computing"[Mesh] OR "Medical Informatics Applications" [Mesh] OR "Medical Order Entry Systems" [Mesh] OR "Medical Records Systems, Computerized" [Mesh] AND 5/1/16 - 4/30/17 AND English

BILL'S RESULTS FROM 2017

MY ISSUES

- Some of these Journals were no longer in PubMed
- Bill didn't like digital imaging, but I've started working with Pathologists and Radiologists that LOVE that stuff and I've recognized that Imaging Informatics has HUGE opportunities in healthcare
- I've got lots of questions ???
- I'm running out of time ()

FINDING MY OWN WAY

- Are there really only 11 top informatics journals or now 9?
- If there are more, what are they?
- How do they rank?
- Where should I be encouraging our CI Fellows or AMDIS folks to publish their scholarly output?
- Where can I find this kind of information?
- What MeSH terms would our CHIO team or other AMDIS attendees want to include?

IF I HAVE SEEN FURTHER, IT IS BY STANDING ON THE SHOULDERS OF GIANTS.

- ISAAC NEWTON

CHANGING JOURNAL LANDSCAPE

Removed:

- Applied Medical Informatics
 - Iranian, no longer in print or in PubMed
 - 1 PubMed article from 2013 about using Google docs for storing patient data
- Journal of Clinical Bioinformatics
 - last publication was from 2015 in PubMed

Renamed:

- j innov health inform = BMJ Health & Care Informatics in 2019
- med inform = JMIR Medical Informatics
 - published since 2013 but only added to SCIE in 2019
- j amia = j am med inform assoc
 - it's ISO 4 standard journal name

JOURNAL IMPACT AND CATEGORIZATION

Web of Science InCites Journal Citati	on Reports	Essential Science Indicators Er	dNote Pub	lons		Sign In	- Help I	English
nCites Journal Citat	tion F	Reports					Clari	ivate
Home Category Rankings							÷	
	Jo	ournals By Rank Cate	jories By R	ank				
Go to Journal Profile								
Master Search	All J	ournal Categories ranked by N	umber of J	ournals				
Select Journals 4		Customize Indicators						
Select Categories		Category	Edition	#Journals -	Total Cites	Median Impact Factor	Aggregate Impact Factor	
	131	LEUTROCHEMISTRI	JUL	20	011,040	2.432	4.421	
Select JCR Year	193	ALLERGY IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY	SCIE	27	127,991 162,870	3.457 1.643	4.663 3.149	
Select Edition	193	INDUSTRIAL RELATIONS & LABOR	SSCI	27	32,289	1.364	1.625	
SCIE SSCI	193	INTEGRATIVE & COMPLEMENTARY MEDICINE	SCIE	27	101,746	1.685	2.199	
Clear Submit	193	MATERIALS SCIENCE, CERAMICS	SCIE	27	151,173	0.980	2.301	
	198	CRYSTALLOGRAPHY	SCIE	26	213,732	2.106	2.575	
	198	EMERGENCY MEDICINE	SCIE	26	87,289	1.391	1.971	
	198	MATERIALS SCIENCE, COMPOSITES	SCIE	26	140,892	1.402	3.254	
	198	ROBOTICS	SCIE	26	52,396	2.121	2.147	
	202	AUDIOLOGY & SPEECH-	SCIE	25	100.231	1.696	1.826	
	202	MEDICAL INFORMATICS	SCIE	25	96,990	2.098	2.634	ľ

"MEDICAL INFORMATICS" JOURNALS

JCR Years

Web of Science. Journal Citation Reports. Medical Informatics category: Medical Informatics covers resources on health care information in clinical studies and medical research. This category includes resources on the evaluation, assessment, and use of health care technology, its consequences for patients, and its impact on society.

TOP 15 OF 25 INFORMATICS JOURNALS

Rank	Journal Title	Impact Factor	Citations	Bill's	Rank	Journal Title	Impact Factor	Citations	Bill's	Rank	Journal Title	Impact Factor	Citations	Bill's
	JOURNAL OF					INTERNATIONAL					JMIR SERIOUS			
	MEDICAL					JOURNAL OF				11	GAMES	2.2	166	
	INTERNET			 ✓ 		MEDICAL					BMC Medical			
1	RESEARCH	4.7	10.875		6	INFORMATICS	3.0	4,584			Informatics and			\checkmark
	IMIR mHealth and		,			JOURNAL OF				12	Decision Making	2.1	3,001	
2	uHealth	45	1 4 1 8			BIOMEDICAL					JOURNAL OF			
2		7.5	1,710		7	INFORMATICS	2.9	5,871			MEDICAL			\checkmark
	JOURNAL OF THE					ARTIFICIAL				13	SYSTEMS	2.1	3,751	
	AMERICAN					INTELLIGENCE IN					MEDICAL &			
	MEDICAL			 ✓ 	8	MEDICINE	2.9	2,097			BIOLOGICAL			
2	INFORMATICS	4.0	0.710			COMPUTER					ENGINEERING &			
3	ASSOCIATION	4.3	8,/13			METHODS AND				14	COMPUTING	2.0	5,422	
	IEEE Journal of					PROGRAMS IN					STATISTICS IN		,	
	Biomedical and				9	BIOMEDICINE	2.7	5,915		15	MEDICINE	1.9	23.519	
4	Health Informatics	3.9	2,922			STATISTICAL								
	MEDICAL					METHODS IN								
	DECISION					MEDICAL								
5	MAKING	3.0	4,718		10	RESEARCH	2.3	3.435						

RANKED #16-25 JOURNALS + COMPS

Rank	Journal Title	Impact Factor	Citations	Bill's	Rank	Journal Title	Impact Factor	Citations	Bill's	Journal Title	Impact Factor
1.0	Health Informatics	1.0	5.40			Applied Clinical	L		J	NEIM	793
16	Journal	1.8	542		21	Informatics	1.1	573	•		77.5
	METHODS OF									Lancet	53.3
. –	INFORMATION IN	. –				Informatics for	•			Chemical Reviews	52.6
17	MEDICINE	1.5	1,462		22	Health & Social Care	1.1	246		JAMA	47.7
	JOURNAL OF					Biomedical				Nature Reviews	
						Engineering-				Canaan	120
10			0.11.6			Biomedizinische				Cancer	42.8
18	PRACTICE	1.5	3,416		23	Technik	1.1	897		Nature Reviews	
10	Health Information	1 /	260			CIN-COMPUTERS				Immunology	42.0
19		1.4	209			INFORMATICS	,		\checkmark	Nature	41.6
	IOURNAL OF				24	NURSING	1.1	731		Nature Reviews	
	TECHNOLOGY					Therapeutic				Canation	115
	ASSESSMENT IN					Innovation &				Genetics	41.5
20	HEALTHCARE	13	2 1 3 7		25	Regulatory Science	0.9	310		Science	41.1
<i>2</i> 0	HEALIH CARE	1.5	<u> </u>		<u> </u>	I Regulatory Deletie	0.7	510			

"MEDICAL INFORMATICS" ARTICLES

JCR Years

Web of Science. InCites Journal Citation Reports.

"MEDICAL INFORMATICS" CITATIONS

JCR Years

Web of Science. InCites Journal Citation Reports.

"MEDICAL INFORMATICS" IMPACT FACTOR

JCR Years

Web of Science. InCites Journal Citation Reports.

ARE THESE THE ONLY MESH TERMS OR EVEN THE RIGHT ONES?

- "Medical Informatics"[Mesh] OR
- "Medical Informatics Computing"[Mesh] OR
- "Medical Informatics Applications"[Mesh] OR
- "Medical Order Entry Systems"[Mesh] OR
- "Medical Records Systems, Computerized"[Mesh] AND

MESH TERM EXPLOSION W/ PUBMED

Informatics MeSH Descriptor Data 2019

Details Qualifiers

MeSH Tree Structures Concepts

Information Science [L01] Classification [L01.100] Classification [L01.100] Communication [L01.143] 🔂 Communications Media [L01.178] • Computing Methodologies [L01.224] 🔂 Copying Processes [L01.280] 🔂 Data Display [L01.296] 🔂 Data Science [L01.305] Informatics [L01.313] 🖨 Computational Biology [L01.313.124] Consumer Health Informatics [L01.313.187] Dental Informatics [L01.313.249] Medical Informatics [L01.313.500] Health Information Exchange [L01.313.500.500] Medical Informatics Applications [L01.313.500.750] Medical Informatics Computing [L01.313.500.875] 🕀 Nursing Informatics [L01.313.650] Public Health Informatics [L01.313.750] Information Centers [L01.346] 🔂 Information Management [L01.399] 🔂 Information Services [L01.453] 🔂 Information Storage and Retrieval [L01.470] 🔂 Information Technology [L01.479] Information Theory [L01.488] Language [L01.559] 🔂 Library Science [L01.583] 🔂 Postcards as Topic [L01.731] Publishing [L01.737] Systems Analysis [L01.906] C

Medical Informatics [L01.313.500] 🗢

Health Information Exchange [L01.313.500.500]

Medical Informatics Applications [L01.313.500.750] Decision Making, Computer-Assisted [L01.313.500.750.100] Decision Support Techniques [L01.313.500.750.190] 🔂 Information Storage and Retrieval [L01.313.500.750.280] 🔂 Information Systems [L01.313.500.750.300] Big Data [L01.313.500.750.300.092] Community Networks [L01.313.500.750.300.184] Databases as Topic [L01.313.500.750.300.188] 🔂 Decision Support Systems, Clinical [L01.313.500.750.300.190] Geographic Information Systems [L01.313.500.750.300.314] Health Information Systems [L01.313.500.750.300.361] Integrated Advanced Information Management Systems [L01.313.500.750.300.420] Knowledge Bases [L01.313.500.750.300.550] Medical Records Systems, Computerized [L01.313.500.750 300.695] Health Smart Cards [L01.313.500.750.300.695.300] Medical Order Entry Systems [L01.313.500.750.300.695.60 MEDLARS [L01.313.500.750.300.710] 🔂 Online Systems [L01.313.500.750.300.742] 🕀 Reminder Systems [L01.313.500.750.300.790]

Medical Informatics Computing [L01.313.500.875]

ANY OTHER MESH TERMS TO POSSIBLY INCLUDE?

Investigative Techniques [E05] Epidemiologic Methods [E05.318] Data Collection [E05.318.308] Records [E05.318.308.940] Birth Certificates [E05.318.308.940.250] Death Certificates [E05.318.308.940.350] Dental Records [E05.318.308.940.375] Hospital Records [E05.318.308.940.425]

Medical Records [E05.318.308.940.968] 🗢

Health Records, Personal [E05.318.308.940.968.249] ●
 Patient Generated Health Data [E05.318.308.940.968.249.625]
 Patient Portals [E05.318.308.940.968.249.750]
 Medical Record Linkage [E05.318.308.940.968.500]
 Medical Records, Problem-Oriented [E05.318.308.940.968.550]
 Medical Records Systems, Computerized [E05.318.308.940.968.625] ●
 Electronic Health Records [E05.318.308.940.968.625.500] ●
 Health Information Exchange [E05.318.308.940.968.625.500.500]
 Health Smart Cards [E05.318.308.940.968.625.750]
 Trauma Severity Indices [E05.318.308.940.968.875] ●

Nursing Records [E00.318.308.940.984]

WRAPPING YOUR HEAD AROUND THE TERM "INFORMATICS" IN OUR FIELD

FINAL QUERY

"Imaging Informatics" OR "Clinical Informatics" OR "Appl Clin Inform"[Journal] OR "BMC Med Inform Decis Mak"[Journal] OR "Comput Inform Nurs"[Journal] OR "Int J Med Inform"[Journal] OR "J Am Med Inform Assoc"[Journal] OR "J Innov Health Inform"[Journal] OR "BMJ Health Care Inform"[Journal] OR "J Med Internet Res"[Journal] OR "J Med Syst"[Journal] OR "JMIR Med Inform"[Journal] OR "JMIR mHealth and uHealth"[Journal] OR "IEEE J Biomed Health Inform" [Journal] OR "Med Decis Making"[Journal] OR "J Biomed Inform"[Journal] OR "Artif Intell Med"[Journal] OR "Comput Methods Programs Biomed"[Journal] OR "Stat Methods Med Res"[Journal] OR "JMIR Serious Games"[Journal] OR "Med Biol Eng Comput"[Journal] OR "Stat Med"[Journal] OR "Health Informatics J"[Journal] OR "Methods Inf Med"[Journal] OR "J Eval Clin Pract"[Journal] OR "Health Inf Manag"[Journal] OR "Int J Technol Assess Health Care"[Journal] OR "Inform Health Soc Care"[Journal] OR "Biomed Tech (Berl)"[Journal] OR "Ther Innov Regul Sci"[Journal] OR "Medical Informatics" [Mesh] OR "Medical Order Entry Systems" [Mesh] OR "Medical Records Systems, Computerized" [Mesh] OR "Health Records, Personal"[Mesh] AND ("2018/05/01"[PDAT]: "2019/04/30"[PDAT]) AND English[Language] DO NOT FILTER FOR HUMAN as it removes 1/3 of results

OUR RESULTS FOR 2019

19,890 Top 25+ Informatics Journals, added "Imaging Informatics" and our updated MeSH Terms in English over the past year (this will change over time as NLM does more indexing)

2,370 Clinical Trials + Comparative Studies + Meta-Analysis + Observational Study

397 Clinical Trials

265

Randomized Control Trials

TREEMAP FOR JMIR

		JMIR 2018 an	d 2019)						
study health	use	web		ra	ndomize		con	trol		care
		systematic	digita		1	internet		CLOSS		online
	trial	qualitative	survey electronic technology		meth	od	program	information		management
	analysis				mobile		effect	ehealth		evaluation
base	review	datum			self	medium		adult		education
		sectional			suppo	rt	medical	development		therapy
patient			among				mental	cance	er	learn
	intervention	social	d	sease	desigi	n	clinical	impro	ve	арр

TREEMAP FOR JAMIA

	JA	AMIA 2018 and 20	J19								
health	patient	information		system			support			systematic	
		decision	base		medication		ation	n drug			learn
	electronic	research	stu	dy	informatics		medical		il hospital		network
	record	model	shar	·e	impa	ict	provid	er	techn	ology	approach
datum	care		repo	rt d	levelopm	nent	online	evalı	ation	identify	practice
use		analysis	soci	al	diseas	e	trial	pro	cess	ehr	event
	review	portal	adver	se	effect	t	case	re	sult	healthcar	e text

The Banas Way

- PubMed weekly hits on CDS / MU / AI / Machine Learning
- Google Scholar Weekly Hits on similar terms
- Twitter
- ListServ
- Trade Press and Non-Informatics News
- You guys email me
- Random methodology that is still unknown....

Our favorites

Banas

- Clinical Decision Support
- MU and Reform commentaries
- Apps and Cool Stuff
- In the News so you can look back and remember July 2018 – June 2019
- And of course....
 - Transition Comedy Slides !!!!!

Kochendorfer

- How many open charts is right?
- Commentaries on the field
- Artificial Intelligence
- Informatics Education

Journal of the American Medical Informatics Association, 25(12), 2018, 1657–1668

Advance Access Publication Date: 26 October 2018

Perspective

doi: 10.1093/jamia/ocy132

Perspective

AMIA Board White Paper: AMIA 2017 core competenci for applied health informatics education at the master degree level

Annette L Valenta,^{1,2} Eta S Berner,³ Suzanne A Boren,⁴ Gloria J Deckard,⁵ Christin Eldredge,⁶ Douglas B Fridsma,⁷ Cynthia Gadd,⁸ Yang Gong,⁹ Todd Johnson,¹⁰ Josette Jones,¹¹ E LaVerne Manos,¹² Kirk T Phillips,¹³ Nancy K Roderer,^{14,15} Douglas Rosendale,¹⁶ Anne M Turner,^{17,18} Guenter Tusch,¹⁹ Jeffrey J Williamson,² and Stephen B Johnson²¹

CORE COMPETENCIES

Health + Tech \neq Informatics

Health + Tech + Social/Behavior Science + Human Factors + Implementation Science + Leadership + Professionalism + Data + Interprofessional Collaboration + ... = Informatics

ONLINE FIRST MAY 10, 2019—PERSPECTIVES IN HOSPITAL MEDICINE

I, EHR

Indira Sriram, PhD¹; Robin Harland, BS¹; Steven R Lowenstein, MD, MPH^{1,2*}

¹University of Colorado School of Medicine, Aurora, Colorado; ²Department of Emergency Medicine and Office of the Dean, University of Colorado School of Medicine, Aurora, Colorado.

1) Introduce me to your patient

- "What you're telling me is important, I'd like to get it right. Do you mind if I type while we speak?"
- "I am going to put in orders now. Here is what I am ordering and why."
- 2) Don't look at me when the patient says they may be depressed
 - Listen. Make eye contact. Touch. Stop typing.
- 3) Incorporate my functionality into the discussion
 - Show images, do appropriate screenings, show graphs to the patient
- 4) Leverage me to include personal aspects as a part of your notes
 Include the patient's picture, preferred name, hobbies, life events

How to start out your talk – Princess Bride keys to success.

TRANSITION COMEDY SLIDE!!!!

Remember Inigo Montoya:

- 1. Polite greeting
- 2. Name
- 3. Relevant personal link
- 4. Manage expectations

Research and Applications

Cranky comments: detecting clinical decision support malfunctions through free-text override reasons

Skye Aaron,¹ Dustin S McEvoy,² Soumi Ray,^{1,3} Thu-Trang T. Hickman,⁴ and Adam Wright^{1,2,3,5}

- All BPA at Partners (inpatient and outpatient) ~2 years
- Examined comments and used NLP for a second level "sentiment analysis" hence the term "Cranky"
- Used as an opportunity to review the logic of rule
- Put rules into 3 buckets
 - Not Broken
 - Malfunction Broken
 - Malfuntion Not Broken could be improved
- Why didn't I think of this paper????!!??!!!!!!

 27% of alerts were found to be either broken or in need of improvement

Journal of the American Medical Informatics Association, 2019,

Cranky Comments

- Patient has CAD or equivalent on Problem List and is not on a Bblocker
 - "You are stupid... patient is on carvedilol"
 - "He is on a B-blocker!!!"
 - Rule was looking for B-blocker, carvedilol is a/b blocker and therefore was excluded
 - Rule was BROKEN and adjusted

- Patient is due for a Cyclosporine level
 - "NOT ON CYCLOSPORINE!!!!"
 - "Stupid EPIC reminder N/A for ophthalmic CyA"
 - Rule did not include route of administration in it's logic
 - Rule was BROKEN and adjusted

User feedback provided through override comments has been an underutilized by valuable data source for improving CDS

Research and Applications

Structured override reasons for drug-drug interaction alerts in electronic health records

Adam Wright^{1,2,3,4}, Dustin S McEvoy⁴, Skye Aaron¹, Allison B McCoy⁵, Mary G Amato^{1,6}, Hyun Kim⁷, Angela Ai⁸, James J Cimino⁹, Bimal R Desai¹⁰, Robert El-Kareh¹¹, William Galanter¹², Christopher A Longhurst¹¹, Sameer Malhotra¹³, Ryan P Radecki¹⁴, Lipika Samal^{1,2}, Richard Schreiber¹⁵, Eric Shelov¹⁰, Anwar Mohammad Sirajuddin¹⁶, and Dean F Sittig¹⁷

- A natural extension to a paper presented last year
- 10 organizations with codified reasons for their DDI alerting surveyed
 - CHOP / Partners / UIC / UCSD / Kaiser / more...

- 177 unique CODIFIED override reasons
- Sites ranged from 3 reasons to 100 (!)

Findings

It's a mess universally...

- Override rates 65% - 95%

The Big 3

- "Not clinically significant"
- "Will monitor"
- "Benefit outweighs risk"

78%

- Similar to Cranky Comments the codified override reasons offer a wealth of data related to DDI fine-tuning AND...
- The reasons need to be better tailored to the situation AND the alerts need to be more actionable
 - Let me cancel the prior med
 - Let me see the INR / QTC / data
 - Let me adjust the dose...
- There is a role for vendors to assist as well (of course)
37

Best practices for preventing malfunctions in rule-based clinical decision support alerts and reminders: Results of a Delphi study

Adam Wright^{a,b,c,*}, Joan S. Ash^d, Skye Aaron^a, Angela Ai^c, Thu-Trang T. Hickman^c, Jane F. Wiesen^d, William Galanter^g, Allison B. McCoy^f, Richard Schreiber^h, Christopher A. Longhurstⁱ, Dean F. Sittig^j

- Another extension of prior CDS paper on malfunctions
- Delphi method to arrive at best practices for developing, testing, implementing and maintaining alerts and avoiding malfunctions

Results

- 7 groups of best practices
- Also an estimated difficulty in implementing the best practice as well as estimated importance of the practice using Likert scale

check for update

Fig. 2. Scatter plot of all best practices, grouped by category.

Figure 1. Randomization and Assignment of Clinicians

A RCT about having 4 Charts available to be opened simultaneously, did NOT seem to make a significant difference in Wrong-Patient Retract-and-Reorder

	No. of Order Sessions			Favors Restricted	Favors Unrestricted	
Practice Setting	Restricted Group ^a	Unrestricted Group ^b	Odds Ratio ^c (95% CI)	Group	Group	P Value
Overall						
Wrong-patient order sessions per 100000	90.7	88.0	1.03 (0.90-1.20)	-	_	.60
Wrong-patient order sessions	1980	2026				
Total order sessions	2183365	2 303 266				

Table 2. Utilization and Wrong-Patient Order Sessions by Number of Records Open in the Unrestricted Group^a

	No. of Order	% of Order	Wrong-Patient Order Sessions per 10	0 000
Open Records	Sessions	Sessions ^b	Rate (95% CI)	P Value ^c
Overall				
1	1 523 585	66.2	52.0 (48.4-55.7)	
2	303 080	13.2	132.0 (119.4-145.6)	
3	168 387	7.3	165.7 (146.8-186.3)	<.001
4	267 697	11.6	184.5 (168.6-201.5)	
Varying	40 517	1.8	150.6 (115.2-193.4)	

Overall: errors for restricted (91) vs. unrest (88) was essentially the same However: sub-analysis showed that 66% orders were done with only 1 chart open and those that opened 4 charts had a rate as high as 185, but low of 52

Restricting the Number of Open Patient Recordsin the Electronic Health RecordONC and JeIs the Record Half Open or Half Closed?0 NC and Je

Robert M. Wachter, MD; Sara G. Murray, MD, MAS; Julia Adler-Milstein, PhD

ONC and Joint Commission have published that they recommend only 1 chart to be open, but had no solid evidence to base that recommendation on.

Commentary: tradeoff of safety and efficiency, unintended consequences, this kind of research is helping us move toward a "digital learning health system"

JOURNAL OF MEDICAL INTERNET RESEARCH

Viewpoint

Unintended Consequences of Nationwide Electronic Health Record Adoption: Challenges and Opportunities in the Post-Meaningful Use Era

Tiago K Colicchio¹, PhD, MBA; James J Cimino¹, MD; Guilherme Del Fiol², MD, PhD

¹Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States ²Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States

Thought piece on where we landed ~10 years later after the start of Meaningful Use

5 Unintended Consequences identified

- Failed Expectations
- EHR Market Saturation
- Innovation Vacuum
- Physician Burnout
- Data Obfuscation

Colicchio et al

The CMS Proposal to Reform Office-Visit Payments

Zirui Song, M.D., Ph.D., and John D. Goodson, M.D.

- Compressing the current CMS fee schedule such that levels 2-5 become a single fee
- Documentation requirements for this type of visit is at level 2 standards
- Part of Patients over Paperwork; attempting to reduce documentation burden

Potential Unintended Consequences?

- Harms providers who do lengthy complex visits (level 4-5)
- Incentivizes short / "easy" visits
- Harms specialties that are E&M heavy (see graph) but not proceduralists
- Do we need to consider alternatives?

Data analysis for synonyms and relatedness

between Nursing and Physician documentation for the same patient

That Can't Be Good: Flu Swab Positive for C. Diff

BY DR.

CLINICAL RESEARCH STUDY

Reducing Hospital Toxicity: Impact on Patient Outcomes

Richard V. Milani, MD,^{a,b} Robert M. Bober, MD,^{a,b} Carl J. Lavie, MD,^b Jonathan K. Wilt,^a Alexander R. Milani,^{a,c} Christopher J. White, MD^b

^aCenter for Healthcare Innovation, Ochsner Health System; ^bDepartment of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School–University of Queensland School of Medicine, New Orleans, La; ^cEmory University School of Medicine, Atlanta, Ga.

- Efforts to reduce circadian rhythm interruptions for an inpatient ward AND...
- Empowering patients to control their health information

 Admitted patients were either sent to traditional med-surg, with tele, unit or to the intervention unit (15 beds)

Hospital Toxicity

<u>Reduce Circadian Disruptions</u>

- Continuous vital sign wrist monitoring
- Reduction in white light
- Phlebotomy hours pushed forward (closer to 6a)
- Noise burden reduction at night

• <u>Empower patients to control</u> their own Health Information

- Inpatient Portal
 - Schedule of upcoming tests
 - Lab results
 - Education
- Recording potential of interactions for playback
- Care team designations and bios on a tablet app

Impressive Outcomes

CUTE	TOX	CIT

Table 4 Outcome Measures in Intervention and Control Groups

Parameter	Control	Intervention	Change	P Value		
Night noise burden (minutes)	60.3 ± 398.2	41.7 ± 335.3	-31%	.04		
Morning phlebotomy time (mean)	4:53 AM	6:04 AM	1:11	<.001		
Hospital length of stay (hours)	145.1 ± 190.2	136.5 ± 144.4	-6%	.04		
Intensive care unit transfer	9.9%	8.4%	-15%	.16		
Inpatient mortality	0.7%	0.7%	0%	.99		
30-day readmission	22.4%	18.8%	-16%	.02		
90-day readmission	39.0%	34.5%	-12%	.009		
\geq 2 admissions over 90 days	17.3%	14.9%	-14%	.06		
Emotional/mental health (rating 'very good/excellent')	52.4%	69.2%	32%	.03		
Medicine needed for pain (rating)	53%	33%	-38%	.07		

- Reduction in 30 / 90 day readmissions
- Improvement in emotional health
- Reduction in medication needed for pain
- Reduction in ICU transfers
- Reduction in LOS

The takeaway?

Demand your own intervention unit in your hospital!!!!

When you realize you don't know what exactly is in your code.....

UIC

Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence

Huiying Liang^{1,8}, Brian Y. Tsui^{2,8}, Hao Ni^{3,8}, Carolina C. S. Valentim^{4,8}, Sally L. Baxter^{2,8}, Guangjian Liu^{1,8}, Wenjia Cai¹, Daniel S. Kermany^{1,2}, Xin Sun¹, Jiancong Chen², Liya He¹, Jie Zhu¹, Pin Tian², Hua Shao², Lianghong Zheng^{5,6}, Rui Hou^{5,6}, Sierra Hewett^{1,2}, Gen Li^{1,2}, Ping Liang³, Xuan Zang³, Zhiqi Zhang³, Liyan Pan¹, Huimin Cai^{5,6}, Rujuan Ling¹, Shuhua Li¹, Yongwang Cui¹, Shusheng Tang¹, Hong Ye¹, Xiaoyan Huang¹, Waner He¹, Wenqing Liang¹, Qing Zhang¹, Jianmin Jiang¹, Wei Yu¹, Jianqun Gao¹, Wanxing Ou¹, Yingmin Deng¹, Qiaozhen Hou¹, Bei Wang¹, Cuichan Yao¹, Yan Liang¹, Shu Zhang¹, Yaou Duan², Runze Zhang², Sarah Gibson², Charlotte L. Zhang², Oulan Li², Edward D. Zhang², Gabriel Karin², Nathan Nguyen², Xiaokang Wu^{1,2}, Cindy Wen², Jie Xu², Wenqin Xu², Bochu Wang², Winston Wang², Jing Li^{1,2}, Bianca Pizzato², Caroline Bao², Daoman Xiang¹, Wanting He^{1,2}, Suiqin He², Yugui Zhou^{1,2}, Weldon Haw^{2,7}, Michael Goldbaum², Adriana Tremoulet², Chun-Nan Hsu^{2,7}, Hannah Carter², Long Zhu³, Kang Zhang^{1,2,7*} and Huimin Xia¹

Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence

Physician-assigned diagnoses							
Organ systems							
	Resp. (<i>n</i> =315,661)	Gast. (n=41,098)	Sys. (<i>n</i> =11,698)	Neuro (<i>n</i> = 8,410)	Geni. (<i>n</i> =1,326)		
Resp. (n=295,403)	0.920	0.100	0.048	0.005	0.049		
Gast. (n=55,704)	0.063	0.850	0.066	0.005	0.044		
Sys. (n=14,267)	0.009	0.028	0.870	0.003	0.012		
Neuro. (n=9,007)	0.002	0.003	0.003	0.980	0.005		
Geni. (n=3,812)	0.006	0.014	0.008	0.004	0.890		

Disease conditions	Our model	lel Physicians				
		Physician group 1	Physician group 2	Physician group 3	Physician group 4	Physician group 5
Asthma	0.920	0.801	0.837	0.904	0.890	0.935
Encephalitis	0.837	0.947	0.961	0.950	0.959	0.965
Gastrointestinal disease	0.865	0.818	0.872	0.854	0.896	0.893
Group: 'Acute laryngitis'	0.786	0.808	0.730	0.879	0.940	0.943
Group: 'Pneumonia'	0.888	0.829	0.767	0.946	0.952	0.972
Group: 'Sinusitis'	0.932	0.839	0.797	0.896	0.873	0.870
Lower respiratory	0.803	0.803	0.815	0.910	0.903	0.935
Mouth-related diseases	0.897	0.818	0.872	0.854	0.896	0.893
Neuropsychiatric disease	0.895	0.925	0.963	0.960	0.962	0.906
Respiratory	0.935	0.808	0.769	0.89	0.907	0.917
Systemic or generalized	0.925	0.879	0.907	0.952	0.907	0.944
Upper respiratory	0.929	0.817	0.754	0.884	0.916	0.916
Root	0.889	0.843	0.863	0.908	0.903	0.912
Average F1 score	0.885	0.841	0.839	0.907	0.915	0.923

We used the F1score to evaluate the diagnosis performance across different groups (rows); our model, two junior physician groups (groups 1 and 2), and three senior physician groups (groups 3, 4, and 5) (see Methods section for description). We observed that our model performed better than junior physician groups but slightly worse than three experienced physician groups. Root is the first level of diagnosis classification.

Bottom line: Be careful with these headline grabbing news/journal articles. This really isn't talking about prospective accurate diagnoses in Pediatric patients but rather AI making concordant diagnoses based on retrospective chart review.

npj | Digital Medicine

ARTICLE OPEN Physician perspectives on integrati into diagnostic pathology

Shihab Sarwar¹, Anglin Dent¹, Kevin Faust², Maxime Richer^{1,3}, Ugljesa Dj Phedias Diamandis ^{1,3,4}

C. Concern about displacement

Impact on Personal Efficiency

200-

150-

100·

50

0

Number

е.

d.

I may not be able to fix the office thermostat but I can certainly fix my

own

Unable to Fix Office Thermostat, Neurosurgeon Removes Own Hypothalamus

EAR INFECTION

Detecting middle ear fluid using smartphones

Justin Chan¹*[†], Sharat Raju^{2,3}*[†], Rajalakshmi Nandakumar¹, Randall Bly^{2,3}, Shyamnath Gollakota^{1†}

La negata Providencial Providen

What is it ?

- App emits chirps with varying frequency interspersed with silence, microphone records the echoes – look for the dip
- Funnel is printer paper and clear tape (different paper types were tested)
- Various angles also tested
- Clinicians and non-clinicians alike tried the evaluation

Results

- Barring some unique situations (anatomical for example) it is close to as sensitive as traditional fluid detection
- Yet another example of low cost screening opportunities utilizing smartphone
- Clinicians and non-clinicians (parents) achieved similar results

Article

A Smartphone-Based Tool for Rapid, Portable, and Automated Wide-Field Retinal Imaging

Tyson N. Kim^{1,2,3}, Frank Myers², Clay Reber², PJ Loury², Panagiota Loumou², Doug Webster², Chris Echanique², Patrick Li¹, Jose R. Davila¹, Robi N. Maamari^{2,4}, Neil A. Switz⁵, Jeremy Keenan³, Maria A. Woodward¹, Yannis M. Paulus¹, Todd Margolis⁴, and Daniel A. Fletcher^{2,6}

- Expands on earlier work related to the use of smartphones for retinal imaging over conventional optho techniques
- Overall aim to improve the quality of images that are captured which have been shown to be highly variable

- Capture of 5 overlapping images in ~1 minute
- Automation fixation guidance
- Touch screen interface and preview
- Use of non-experts (ie medical students and residents) in capture
- Did not rely on head stabilization

A

С

8

Results

- Inpatient and Outpatient use cases including fungemia screening in ICU patients detecting involvement
- Image capture was graded as appropriate
- High comfort rating from patients
- Comparable results in experts and non-experts capturing the image

- This is only going to get better
- This was an iPhone 5s....

Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence

Ramachandran Rajalakshmi¹ · Radhakrishnan Subashini¹ · Ranjit Mohan Anjana¹ · Viswanathan Mohan¹

- Extension of prior AI work from 2017 Google work
- "Fundus on Phone" images examined by AI and compared to Optho read

 Extends prior work AI by doing it on top of smartphone acquired images
 Vory good agrooment

 Very good agreement with grading such that it appears to be an appropriate screening modality

Fig. 2 Comparison of diabetic retinopathy (DR) severity between ophthalmologist and EyeArt software grading (n = 296)

Journal of Digital Imaging https://doi.org/10.1007/s10278-019-00236-w

ORIGINAL PAPER

10 Steps to Strategically Build and Imp Imaging System: HIMSS-SIIM Collabora

Henri Primo¹ · Matthew Bishop² · Louis Lannum³ · Daw

Fig. 1 The integrated nature of EI governance: many non-imaging considerations impact EI decision-making in all five areas of focus

Don't be an anti-vaxxer....

Impassable EMR Alert Demands Flu Shot For Deceased Patient Influenza Vaccine

that shows vaccine education session with the patient including their clear verbalization of a refusal in fluent English. Use Ken Burn effect."

"Upload 30 minute video

BY PALPABLE THRILL

Google's Masterplan for Healthcare

The Medical Futurist 19 June 2018

63

http://fortune.com/2018/06/22/walmart-blockchainpatent-health-records/?utm_campaign=social-buttonsharing&utm_medium=social&utm_source=twitter.com

HEALTH • BLOCKCHAIN

Walmart Just Scored a Patent for a Blockchain-Based Health Care Records System

HIT Think What 'Amazon healthcare' could look like in 5 years

By Yulan Egan, Jacqueline Kimmell Published November 15 2018, 5:15pm EST

Health Information Technology Amazon moves into healthcare: A 2018 timeline

Alia Paavola - Thursday, December 20th, 2018 Print I Email

Episode 3: Dr. David T. Feinberg says fixing healthcare is 'the simplest thing we can do'

⊙ October 9, 2018 🛔 Jeremy Corr 🗁 Uncategorized 🜻 2

Before leaving Geisinger for Google, Dr. David Feinberg offered his plan to fix U.S. healthcare

Robert Pearl, M.D. - Wednesday, November 21st, 2018 Print I Email

Results (28)

Application integration
ANNALS OF MEDICINE

WHY DOCTORS HATE THEIR COMPUTERS

Digitization promises to make medical care easier and more efficient. But are screens coming between doctors and patients?

By Atul Gawande November 5, 2018

NEW YORKER

The Tar Pit has trapped a great many of us: clinicians, scientists, police, salespeople—all of us hunched over our screens, spending more time dealing with constraints on how we do our jobs and less time simply doing them. And the only choice we seem to have is to adapt to this reality or become crushed by it.

Why Doctors Love Their Computers

https://cio.ucop.edu/why-doctors-love-their-computers/

University of California IT Blog

 It's all about perspective and it's nice to see a positive piece after an avalanche of negativity in past 8 years

MEDICARE

Debunking Regulatory Myths

Myth Topics

- <u>Computerized Process Order</u> Entry (CPOE)
- Medical Student Documentation
- <u>Ancillary staff and/or patient</u> <u>documentation</u>

- Good resource if you need to have a crucial conversation with your compliance officer perhaps
- Perhaps some things that could help with the burnout equation

Worth checking out....

Appendix

Getting Rid of Stupid Stuff

Melinda Ashton, M.D.

Opinion

Health Apps and Health Policy What Is Needed?

Appendix

RESEARCH ARTICLE

Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study

Andrew G. Taylor^{1,2*}, Clinton Mielke², John Mongan^{1,2}

1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States of America, 2 Center for Digital Health Innovation, University of California, San Francisco, San Francisco, California, United States of America

* andrew.taylor@ucsf.edu

VIEWPOINT

A Decade of Health Information Technology Usability Challenges and the Path Forward

AMIA Annu Symp Proc. 2018; 2018: 1273–1281. Published online 2018 Dec 5.

Providers' Perspectives on Sharing Health Information through Acute Care Patient Portals

Lisa V Grossman, ^{1, 2} Ruth M Masterson Creber, ³ Beatriz Ryan, ⁴ Susan Restaino, ⁵ Irma Alarcon, ⁵ Fernanda Polubriaginof, ¹ Suzanne Bakken, ^{1, 3} and David K Vawdrey ^{1, 4}

PMCID: PMC6371328 PMID: <u>30815169</u>

Appendix

Empowering Patients during Hospitalization: Perspectives on Inpatient Portal Use

Ann Scheck McAlearney, Naleef Fareed, Alice Gaughan, Sarah R. MacEwan, Jaclyn Volney, Cynthia J. Sieck

Viewpoint

May 20, 2019

Artificial Intelligence in Health Care Will the Value Match the Hype?

Ezekiel J. Emanuel, MD, PhD^{1,2}; Robert M. Wachter, MD³

» Author Affiliations

JAMA. 2019;321(23):2281-2282. doi:10.1001/jama.2019.4914

Appendix

Also important -> @EricTopol tweet 12/23/18

Digital Medicine Clinical Trials

Condition	Digital Intervention	Impact	Citation
Asthma	Inhaler Sensor + GPS for hot spots	Reduce rescue inhaler use by 78%; 48% more symptom-free days (Louisville Air)	Barrett, Health Affairs, April 2018
Hypertension	Smartphone app RCT	Improved medication adherence	Morawski, JAMA Internal Med 2018
Diabetes	Telemedicine RCT	Improved control of Type 2 diabetes	Wild et al, PLOS Medicine, 2016
Heart failure	Telemedicine RCT	Less hospital admission and mortality	Koehler, Lancet, 2018
Inflammatory Bowel Disease	Telemedicine RCT	Striking reduction in outpatient visits and hospital admissions	De Jong, Lancet 2017
Cancer	Smartphone app RCT	Improved survival in lung cancer	Denis, ASCO 2018
Headaches	Telemedicine RCT	As effective as in traditional consultation	Muller, Neurology, 2017
Visual Impairment	Smartphone app RCT	Marked improvement of detection among school children in Kenya	Rono, Lancet Global Health, 2018
Insomnia	Digital CBT RCT	Major reduction in insomnia among patients with mental health conditions	Freeman, Lancet Psychiatry, 2017
Attention deficit disorder	Video game RCT	Significant improvement of attention performance in children and adolescents	Kollins, December 2017 and Proof of Concept PLOS One, 2018
Schizophrenia	Avatar CBT RCT	Significant reduction of hallucinations	Craig, Lancet Psychiatry 2017

Tweet from @EricTopol outlining RCTs and Digital Health

Interventions

@DoctorKarlMD