Canecer(enter  Learning in Diagnostic Imaging

Kevin W. McEnery, MD

Professor of Radiology

Director Innovation Imaging Informatics
kmcenery@mdanderson.org




Objectives

* Discuss opportunity for machine learning in
diagnostic imaging

* Review potential roadblocks for fully
leveraging machine learning processes

* Appreciate machine learning integration
opportunities beyond imaging
Interpretation



Al and Imaging: Overview
* Will Al Replace Radiologists?

* Overview of machine learning in image analysis
* Barriers to machine learning

* Al imaging use cases beyond image
Interpretation

* Potential Al impact on radiologist-provider
Interactions

* Conclusion




Will Al Replace Radiologists?
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Fig 1. Word cloud of titles of the top 25 nonscientific results from a Google (Menlo
Park, California) search of the terms “artificial intelligence radiology.”

I, Paul H. et al., Artificial Intelligence and Radiology: Collaboration Is Key

Journal of the American College of Radiology , Volume 15, Issue 5, 781 - 783



Stanford | news

NOVEMBER 15, 2017

Stanford algorithm can diagnose pneumonia
better than radiologists

Stanford researchers have developed a deep learning algorithm that evaluates chest X-rays for signs of disease. In just
over a month of development, their algorithm outperformed expert radiologists at diagnosing pneumonia.

BY TAYLOR KUBOTA

Stanford researchers have developed an algorithm that offers diagnoses based off chest X-ray images.
It can diagnose up to 14 types of medical conditions and is able to diagnose pneumonia better than
expert radiologists working alone. A paper about the algorithm, called CheXNet, was published Nov.

14 on the open-access, scientific preprint website arXiv.

“Interpreting X-ray images to
diagnose pathologies like
pneumonia is very challenging, and
we know that there’s a lot of
variability in the diagnoses
radiologists arrive at,” said Pranav
Rajpurkar, a graduate student in the
Stanford Machine Learning Group
and co-lead author of the paper.
“We became interested in
developing machine learning
algorithms that could learn from
hundreds of thousands of chest X-
ray diagnoses and make accurate
diagnoses.” . 5 S . ;
Radiologist Matthew Lungren, left, meets with graduate students Jeremy Irvin and
Pranav Rajpurkar to discuss the results of detections made by the algorithm. A tool
the researchers developed along with the algorithm produced these images, which

initially released by the National are similar to heat maps and show the areas of the X-ray most indicative of
pneumonia. (Image credit: L.A. Cicero)

The work uses a public dataset

Institutes of Health Clinical Center
on Sept. 26. That dataset contains
112,120 frontal-view chest X-ray images labeled with up to 14 possible pathologies. It was released in
tandem with an algorithm that could diagnose many of those 14 pathologies with some success,
designed to encourage others to advance that work. As soon as they saw these materials, the

Machine Learning Group - a group led by Andrew Ng, adjunct professor of computer science - knew

it had found its next research direction.



INNOVATION

Al Will Change Radiology, but It
Won’t Replace Radiologists

by Thomas H. Davenport and Keith J. Dreyer, DO

MARCH 27, 2018

CORBIS/VCG/GETTY IMAGES

Recent advances in artificial intelligence have led to speculation that Al might one day replace
human radiologists. Researchers have developed deep learning neural networks that can identify
pathologies in radiological images such as bone fractures and potentially cancerous lesions, in some

cases more reliably than an average radiologist. For the most part, though, the best systems are

currently on par with human performance and are used only in research settings.



Current MDACC radiologist’s workspace...

Unread Studies Worklist

Implements PACS-EMR Integration
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-18 years of prior study images available
forimmediate retrieval

-16,000 studies/month originating

from outside imaging centers.
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Same Snapshot as 2 EMR Data
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70 Inch display span



Automatic Display of current and relevant prior images

History: Lymphoma
Indication: Chest Pain
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Diagnosis: Left PTX, < 15%
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Patient Outcome: Observatio
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cases more reliably than an average radiologist. For the most part, though, the best systems are
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Will Al Replace Radiologists?
Answer: Red Pill or Blue Pill?
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ZThis is your last Chance.... After this, there is no turning back.
f’u take the blue pill, the story ends. You wake up in your bed and believe
“Whatever you want to believe.

You take the red pill, you stay in Wonderland and I'll show you how deep the

rablii’t,-hole goes..... Remember, all I'm offering you it's the truth, nothing more...




Imaging Process: More than
identification of (pertinent) findings
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Imaging Value Process: Patient Context

 Orders
« Appropriate for the patient’s complete presentation

* Protocols

* Optimized to inform the clinical decision process
 Acquisition

« Optimized to inform at safest level, greatest clinical data

* Interpretation
* Focus on findings pertinent to patient

* Reports

* Optimized to efficiently communicate and inform the care
process as well as the patient




Machine Learning

* Subfield of computer science that gives computers
the ability to learn without being explicitly
programmed

* Simply, ML is the science of teaching computers
how to learn, in an effort to glean information from
data that more conventional statistical approaches
may not be able to achieve




Machine Learning

* Arises at the intersection of statistics, which seeks
to learn relationships from data, and computer
science, with its emphasis on efficient computing
algorithms.

* Evolved from the study of pattern recognition and
computational learning theory in artificial
intelligence.

* Explores the study and construction of algorithms
that can learn from and make predictions on data.

* Goal of ML algorithm is to develop a mathematical
model that fits the data.




ImageNet Large Scale Visual Recognition Challenge results

Image-net.org

* ImageNet collaboration
maintains a large dataset inthe competition'sfirst year
. — teams had varying success.
— (approximately 14 :

Every team got at least 25%

-y . wrong.
million images) labeled
Wlth Nnouns related tO the In 2012, the team to first use
c deep learning was the only
coO nte nt Of eacC h IMa g e team to get their error rate
below 25%.
Sponsors annual |
- The following year
competition to test nearly every team got
) 25% or fewer wrong.
accuracy of image ..
recognition algorithms | In2017,29 of 58
teams got less than

5% wrong.
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seberry muffin or chihuahua? Fried chicken or labradoodl|e?
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CAD vs. Machine Learning

* Computer-aided diagnosis
* Assessment of pre-determined image characteristics

* Prior knowledge of association to disease
* Example: Mammography - Micro-calcifications

* Machine Learning
* Image analysis without pre-determined characteristics

* Analysis process groups images through “identified
characteristics”

* |dentified features may or may not be determined

* Outcome: observe if the grouping properly classifies known
disease processes




CAD vs. Machine Learning

| Medical Image _ | h-’ledica_l Image |
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Fig 5. Schematic demonstrating the comparison of conventional hand-crafted computer-aided diagnosis and radiomic features,
convolutional neural network (CNN)-extracted features, and an ensemble technigue in the task of distinguishing between lesion
type as used in Antropova et al [37] and Huynh et al [42].

iger, ML , Machine Learning in Medical Imaging.

'‘Am Coll Radiol 2018;15:512-520




Radiology image classification...

~* Abnormality present (y/n)
" Infection, lung cancer, metastasis?

* Staging of detected lesion —location, size, characteristics



Machine Learning Data Sets

* Training
* Image set to initially establish “*hyper-parameters”

* Test

* Dataset to determine outcome of training

* Validation

* Final test of Algorithm
* Dataset not previously “known” to algorithm

» Determination accuracy (sensitivity/specificity)

* Avoid “overfitting” of the algorithm

» Validation cases should be accounted for in the basis of algorithm

* “Retesting” validation set leads to overfitting
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Development and Validation of Deep Learning
Algorithms for Detection of Critical Findings in Head
CT Scans

Sasank Chilamkurthy', Rohit Ghosh', Swetha Tanamala', Mustafa Biviji’, Norbert G. Campeau®, ¢ N O n = C O n t ra St h e a d CT

Vasantha Kumar Venugopal®, Vidur Mahajan*, Pooja Rao', and Prashant Warier!
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Development and Validation of Deep Learning
Algorithms for Detection of Critical Findings in Head
CT Scans

Sasank Chilamkurthy'. Rohit Ghosh!, Swetha Tanamala'. Mustafa Biviii®. Norbert G. Campeau?.

Results Qure25k dataset contained 21,095 scans (mean age 43.31; 42.87% female) while
batches B1 and B2 of CQ500 dataset consisted of 214 (mean age 43.40; 43.92% female)
and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the
algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for
detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on
CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively.
For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset
were 0.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were (.9624,
0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can
accurately identify head CT scan abnormalities requiring urgent attention. This opens up the
possibility to use these algorithms to automate the triage process. They may also provide a
lower bound for quality and consistency of radiological interpretation.
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and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the
algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for
detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on
CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively.
For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset
were (.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were 0.9624,
0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can
accurately identify head CT scan abnormalities requiring urgent attention. This opens up the
possibility to use these algorithms to automate the triage process. They may also provide a
lower bound for quality and consistency of radiological interpretation.



Scope of Algorithm

* Non-contrast head CT scans

* Pathology

* Intracranial hemorrhage (ICH)
* Intraparenchymal (IPH)
* Intraventricular (IVH)
e Subdural (SDH)
* Extradural (EDH)
 Subarachnoid (SAH) hemorrhages

* Calvarial fractures
* Midline shift

* Mass effect
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Figure 3: Receiver operating characteristic (ROC) curves for the algorithms on Qure25k and CQ500
datasets. Blue lines are for the Qure25k dataset and Red lines are for the CQ500 dataset. Readers’
TPR and FPR against consensus on CQS500 dataset are plotted along with the ROCs for comparison
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Al: Pneumonia Detection

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays
with Deep Learning

Pranav Rajpurkar™! Jeremy Irvin~! Kaylie Zhu! Brandon Yang! Hershel Mehta!

Tony Duan'! Daisy Ding,1 Aarti Ba,gul1 Robyn L. Ball? Curtis L:J.nglcrtz3 Katie Shpauskayas
Matthew P. Lungren® Andrew Y. Ng!

Abstract

Input
Chest X-Ray Image

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional

neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-

view X-ray images with 14 diseases. Four Input CheXNet

practicing academic radiologists annotate a Chest X-Ray Image 1 2 1_| ayer CN N

1'11;{191_0 bp@Qﬁmﬂg Qll%lt of radiologists.

tgst set, on which we compare the perfor-
CheXNet

:lp _i‘ié’lﬁ‘g‘[fl’&V&H “deﬁQ - 121-layer CNN
ologist perfofmance on the F1 metric. We

extend CheXNet to detect all 14 diseases in Output Output

ChestX-ray14 and achieve state of the art re-

sults on all 14 diseases. Pneumonia Positive (85%) Pneu Mmon ia POSitive (85%)

[cs.CV] 25 Dec 2017

,,
J

1. Introduction

More than 1 million adults are hospitalized with pneu-
monia and around 50,000 die from the disease every
year in the US alone (CDC, 2017). Chest X-rays
are currently the hest available method for diagnosing
prneumonia (WHO, 2001), playing a erucial role in clin- work that takes a chest X-ray image as input, and outputs
ical care (Franquet, 2001) and epidemiological studies the probability of a patlmlog:y. On this example, CheXnet
(Cherian et al., 2005). However, detecting pneumo- correctly detects pneumonia and also localizes areas in the
nia in chest X-rays is a challenging task that relies on image most indicative of the pathology.

the availability of expert radiologists. In this work, we
present a model that can automatically detect pneu-
monia from chest X-rays at a level exceeding practicing
radiologists.

Figure 1. CheXNet is a 121-layer convolutional neural net-

irXiv:1711.05225v
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Our model, ChexNet (shown in Figure 1), is a 121-
layer convolutional neural network that inputs a chest

. les ¢ 3 w1 = e ae Y ratr immace and c11tmiite Fhe nreba Bilidar of vt 1 ey a
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CheXNet: Radiologist-Level Pneumonia Detection on Chest

(a) Patient with multifocal com-

acquired pneumonia. The
model correctly detects the airspace
disease in the left lower and right up-
per lobes to arrive at the pneumonia

(d) Patient with a right-sided
mothroax

model de

O COorITE

pReum

L are mos
one of the p

M

(b) Patient with a left lung nodule.
The model identifies the left lower
lobe lung nodule and correctly clas-

sifies the ay.

(e) Patient with a large right pleural

fusion (fluid in the pleural s )
The model correctly labels the effu-
sion and focuses on the right lower

s with Deep Learning

(¢) Patient with primary lung ma-
lignancy and two large masses, one
in the left lower lobe and one in
the right upper lobe adjacent to the
mediastinum. The model correctly
identifies both masses in the

(f) Patient with congest
failure and cardiomegaly (
heart). The model correctly id

» X-ray

-aptions for each image are provided by




Deep Learning at Chest
Radiography: Automated
Classification of Pulmonary
Tuberculosis by Using Convolutional
Neural Networks'

oRIGINAL RESEARCH m THORAGIC IMAGING

Paras Lakhani, MD

Baskaran Sundaram. MD Purpose: To evaluate the efficacy of deep convolutional neural net-
, M

works (DCNNs) for detecting tuberculosis (TB) on chest
radiographs.

Materials and Four deidentified HIPAA-compliant datasets were used in
Methods: this study that were exempted from review by the institu-
tional review board, which consisted of 1007 posteroante-
rior chest radiographs. The datasets were split into tr:
ing (68.0%), validation (17.1%), and test (14.9%). Two
different DCNNs, AlexNet and GoogleNet, were used to
classify the images as having manifestations of pulmonary
TB or as healthy. Both untrained and pretrained networks
on ImageNet were used, and augmentation with multi-
ple preprocessing techniques. Ensembles were performed
on the best-performing algorithms. For cases where the
classifiers were in disagreement, an independent board-
certified cardiothoracic radiologist blindly interpreted
the images to evaluate a potential radiologist-augmented
workflow. Receiver operating characteristic curves and
areas under the curve (AUCs) were used to assess model
performance by using the DelLong method for statistical
comparison of receiver operating characteristic curves.

The best-performing classifier had an AUC of 0.99, which
was an ensemble of the AlexNet and GoogleNet DCNNs.
The AUCs of the pretrained models were greater than
that of the untrained models (P < .001). Augmenting the
dataset further increased accuracy (P values for AlexNet
and GoogleNet were .03 and .02, respectively). The
DCNNs had disagreement in 13 of the 150 test cases,
which were blindly reviewed by a cardiothoracic radiolo-
gist, who correctly interpreted all 13 cases (100%). This
radiologist-augmented approach resulted in a sensitivity
of 97.3% and specificity 100%.

Conclusion: Deep learning with DCNNs can aceurately classify TB at
chest radiography with an AUC of 0.99. A radiologist-aug-
mented approach for cases where there was disagreement

! From the Department of Radiology, Thomas Jefferson Uni- X .
versity Hospital, Sidney Kimmel Jefferson Medical College, among the classifiers further improved accuracy.
132 S 10th St, Room 1080A, Main Building, Philadelphia,

PA 19107-5244. Received October 5, 2016; revision ©RSNA. 2017

requested November 23; revision received December 12;

accepted January 9, 2017; final version accepted January

10. Address correspondence to PL. {e-mall: paras.

lakhani@jefferson.ed.

©RSNA, 2017
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AUC Test Dataset

Untrained with Augmentation™

Pretrained with Augmentation™

0.90 (0.84, 0.95)
0.88 (0.81, 0.92)

0.98 {0.95, 1.00)
0.97 (0.93, 0.99)

0.95 (0.90, 0.98)
0.94 (0.89, 0.97)

0.98 (0.94, 0.99)
0.98 (0.94, 1.00)
0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.
* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

o
o

Sensitivity

o
@

Sensitivity

o
.

GooglLeMNet-U

GooglLehet-TA

— AlaxMNet-TA

= GooglLeMet -TA

= Ensemble

1 - Specificity

1 - Specificity

(a) Comparison of receiver operating characteristic curves for the untrained AlexNet-U and GoogleNet-U models and pretrained with augmentation
AlexNet-TA and GoogleNet-TA models. The receiver operating characteristic curves for the AlexNet-TA and GooglLeNet-TA models had an AUC that was significantly
greater than that for the untrained AlexNet-U and GoogLeNet-U models (P <= .001) (Table 3). (b) Comparison of receiver operating characteristic curves for the
AlexNet-TA, GoogLeNet-TA, and ensemble of the two models. The ensemble provided the best AUC (Table 3).




Barriers to Machine Learning in Radiology

* Limited publically available image training
datasets

* Current annotation processes FTE intensive

* Radiology reporting not aligned to dataset annotation

* Lack of universal standard for image annotation
* Several standard available (DICOM SR)

* Thousands of imaging use cases




Al IN CLINICAL DIAGNOSTICS
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Al: Defining High Value Use Cases

Al IN CLINICAL DIAGNOSTICS
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Lung-RADS™ Version 1.0 Assessment Categories Release date: April 28, 2014

probability of | EStimated
Category Category Descriptor | Category Findings Management . Population
Malignancy
Prevalence
Incomplete o prior chest CT examination(s) being located for comparison Additional lung cancer screening CT images andfor o/a 15
P ) part or all of lungs cannot be evaluated comparison to prior chest CT examinations is needed °
No nodules and no lung nodules
Megative definitely benign 1 nodule(s) with specific calcifications: complete, central, popcorn, concentric
nodules fings and fat containing nodules
solid nodule(s):
<6 mm
T Continue annual screening with < 1% 90%
Benign Nodules with a very low part solid nodule(s): LDCT in 12 months '
likelihood of becoming a . . .
Appearance| . . 2 < 6 mm total diameter on baseline screening
Behavi clinically active cancer due =
orBenavior] . size or lack of growth non solid nodule(s) (GGN):
< 20 mm OR
= 20 mm and unchanged or slowly growing
category 3 or 4 nodules unchanged for = 3 months
. solid nodule(s):
Probably benign B t baseline OR
finding(s) - short term 2010 =8 mm at baseline
Probabl follow up suggested; new 4 mm to <6 mm
Benignv includes nodules with a 3 part solid nodule(s) 6 month LDCT 1-2% 5%
low likelihood of z 6 mm total diameter with solid component < 6 mm OR
becoming a clinically .
. new < 6 mm total diameter
active cancer
non solid nodule(s) (GGN) = 20 mm on baseline CT or new
solid nodule(s):
= 8 to < 15 mm at baseline OR
growing < & mm OR
" new 6 to < & mm 3 month LDCT; PET/CT may be used when there is 5.15% 2%
part solid nodule(s: a = 8 mm solid component
z 6 mm with solid component 2 6 mm to < 8 mm OR
Fln.dllngs fo.r whic h_ with a new or growing < 4 mm solid component
additional diagnostic -
Suspicious | testing and/or tissue endobronchial nodule
sampling is solid nodule(s)
recommended =15 mm OR
8 new or growing, and = 8 mm chest CT with or without contrast, PET/CT and/or
part solid nodule(s) with: tissue sampling depending on the *probability of >15% 06
a solid component = 8 mm OR malignancy and comorbidities. PET/CT may be
) ) used when there is a = 8 mm solid component.
a new or growing = 4 mm solid component
ax Category 3 or 4 nodules with additional features or imaging findings that

increases the suspicion of malignancy

Clinically Significant or




Al/ML Roadblocks

* Data Integrity
* Collection and curation of vetted datasets

* Costly data annotation (retrospective)

* Sharing and Pooling of Datasets
* Models need large datasets to create, test and validate

* Lots of ready consumers...

* Network Infrastructure
* Image datasets and ancillary information

* Cloud-based processes likely

* Privacy and security of pooled data

* Anonymization processes




Al/ML Roadblocks
 FDA

* Algorithm validation
* Likely more formalized infrastructure

* Medical-legal

» “Replace radiologist” — who assumes liability?

ms@ DIAGNOSIS ! WHAT SORRY, BUDDY | comes
~ 90T Do NOW?/ WiTH THE Jo8;

@| WHEN HANDING RADIOLOGY OVER 10 ARTIF
SOUNDS APPEALING.




ML: Patient Scheduling

* MDACC unique challenge is large number of patients from
outside of Houston area who on follow-up visits require
imaging prior to clinical appointment.

* Machine Learning opportunity: Create patient schedules,
based upon patient preference, optimize patient’s schedule
to reduce time in Houston on return visit

* Status: in pilot testing
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ML: Imaging Protocols

Journal of Digital Imaging
https://doi.org/10.1007/510278-018-0066-y

@ CrossMark

Efficiency Improvement in a Busy Radiology Practice:
Determination of Musculoskeletal Magnetic Resonance Imaging
Protocol Using Deep-Learning Convolutional Neural Networks

Young Han Lee'!

©) Society for Imaging Informatics in Medicine 2018

Abstract
The purposes of this study are to evaluate the feasibility of protocol determination with a convolutional neural networks (CNN)
classifier based on short-text classification and to evaluate the agreements by comparing protocols determined by CNN with those
determined by musculoskeletal radiologists. Following institutional review board approval, the database of a hospital information
system (HIS) was queried for lists of MRI examinations, referring department, patient age, and patient gender. These were exported
to a local workstation for analyses: 5258 and 1018 consecutive musculoskeletal MRI examinations were used for the training and
test datasets, respectively. The subjects for pre-processing were routine or tumor protocols and the contents were word combinations
of the referring department, region, contrast media (or not), gender, and age. The CNN Embedded vector classifier was used with
Word2Vec Google news vectors. The test set was tested with each classification model and results were output as routine or tumor
protocols. The CNN determinations were evaluated using the receiver operating characteristic (ROC) curves. The accuracies were
evaluated by a radiologist-confirmed protocol as the reference protocols. The optimal cut-off values for protocol determination
between routine protocols and tumor protocols was 0.5067 with a sensitivity of 92.10%, a specificity of 95.76%, and an area under
curve (AUC) of 0.977. The overall accuracy was 94.2% for the ConvNet model. All MRI protocols were correct in the pelvic bone,
upper arm, wrist, and lower leg MRIs. Deep-learning-based convolutional neural networks were clinically utilized to determine

Fig. 2 Model architecture with R B S — —-
two channels for the routine or C T T T T | giijpmi
tumor protocols of the Department L]

musculoskeletal MRI Age L = NN Routine protocol

! Gender | || NN

Region 1 N Tumor protocol

Contrast - L

n x k representation of words Convolutional layer with multiple
filter widths and feature maps



Structured reporting will necessarily
evolve to discrete data reporting...

ORIGINAL ARTICLE

Evaluating Report Text Variation and
Informativeness: Natural Language
Processing of CT Chest Imaging for
Pulmonary Embolism

Objective: The aim of © ) i vari. of language in free tex
to gauge the informari % i i ine learning as proxy
Materials and Methods: All 1 performed under a PE protocol and ordered in the

emergency department in 2016 ¢ used commercial text-mining and

predictive analytics software to parse and describe all reporr text and ro generare a suite of machine learning nules that sought to predicr

the “gold standard” radiological disgnosis of PE.

Results: There was extensive variation in the length of Findings secrion and Impression scction texts across the reports, only marginally
ked concentration of terms was found: for example, 20 words were used in the Findings
5 distinet words were each used in onl

sct, machine learning rules had perfect sensitiviry bur imperfect specificity, a low positive predicrive valuc of and a misclassification

Conclusion: Use of free text reporting was associared with extensive variability in report length and report terms used. Interpretarion of
the free text was a difficult machine learning task and suggests porential difficulty for human recipicnts in fully understanding such
reports. These results support the prospective assessment of the impact of a fully structured report template with at least some mandatory
discrete fields on ease of use of repors and their understanding.
Key Words: Structured reporting, text anal pulmonary embaolus, machine learning, vanability, prediction, narural language pro-
ng, NLP
r ; - of Radialk
JAm € 562, Cop Tne. of Radiology

INTRODUCTION rielg in r 5] and are more us endly
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[ benefits, structured reporting may
e in informartion transfe ci ir i [7], lead to shorter reports thar have been

now clear thar strucrured templares i
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Structured reporting will necessarily

evolve to discrete data reporting...

ORIGINAL ARTICLE

Evaluating Report Text Variation and
Informativeness: Natural Language
Processing of CT Chest Imaging for
Pulmonary Embolism

Results: There was extensive variation in the length of Findings section and Impression section texts across the repores, only marginally
associated with a positive PE diagnosis. A marked concentration of terms was found: for example, 20 words were used in the Findings
section of 93% of the reports, and 896 of 2,296 distinct words were each used in only one repon’s Impression section. In the validation
sct, machine leaming rules had perfect sensitivity bur imperfect specificity, a low positive predicrive value of 73%, and a misclassification

rate of 3%.

Conclusion: Use of free text reporting was associated with extensive variability in report length and report terms used. Interpretation of

the free ext was a difficult machine learning task and suggesis potential difficulty for human recipients in fully understanding such
reports. These results support the prospective assessment of the impact of a fully structured report template with at least some mandatory

discrete fields on ease of use of repors and their understanding.

Key Words: Structured reporting, rext analysis, pulmonary embolus, machine learning, vanability, prediction, narural language pro-

cessing, NLP
[ Am Coll Radiol 2011 8;15:554-562. Copyright © 2018 Published by Elsevier Inc. on .'}e':'J.-n_',"'qf':-!rafl'i'sl':eje College rgf'ﬁxaﬂrfﬂfﬂg}-

INTRODUCTION yield within radiology [3] and are more user-friendly

It is accepred that structured remplates represent the  for clinical parmers [4-6].

turure of radiology reporting [1]. Despite early reports of Beyond these benefits, swrucrured reporting may

no difference in information transfer efficiency [2], it is enhance billing [7], lead to shorter reports thar have been

now clear that structured remplates improve diagnostic found easier for partients to understand [8], and be more
useful for population health analytics and other research
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ML: Imaging Use Cases Beyond Interpretation
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MDACC future ML radiologist’'s workspace...
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Why Al Will Not Replace Radiologists...

Radiologists will also be empowered to become more
‘doctor’ than ever before, with productivity gains
allowing more time communicating results to both
clinicians and patients. | can certainly envisage
radiologists as data communicators, both directly to
clinical teams on their rounds and tumour boards,
and even direct-to-patient information-giving.

hy Al will not replace radiologists, Hugh Harvey
https://towardsdatascience.com/why-ai-will-not-replace-radiologists-c7736f2c7d80

&


https://towardsdatascience.com/@DrHughHarvey?source=post_header_lockup

Conclusions

* Initial reports of Al in imaging are promising

* Al and ML will have tremendous impact on imaging
in the coming years.

* Application of Al will impact all processes within
imaging, including the interpretation process.

* Likely transition to increased quantitate reporting

* Align reporting with data needed for algorithms

* Impacts in clinical decision support, scheduling,
scanner operations, results delivery and review will
be impacted with Al-based processes




Conclusions

Radiologists who refuse to
incorporate Al into daily clinical
practice will be replaced by
radiologists who do...

although the generation of
radiologists affected by ML
transition TBD...




