

MDAnderson Cancer Center

Making Cancer History®

Artificial Intelligence and Machine Learning in Diagnostic Imaging

Kevin W. McEnery, MD Professor of Radiology Director Innovation Imaging Informatics kmcenery@mdanderson.org

Objectives

- Discuss opportunity for machine learning in diagnostic imaging
- Review potential roadblocks for fully leveraging machine learning processes
- Appreciate machine learning integration opportunities beyond imaging interpretation

Al and Imaging: Overview

- Will AI Replace Radiologists?
- Overview of machine learning in image analysis
- Barriers to machine learning
- Al imaging use cases beyond image interpretation
- Potential AI impact on radiologist-provider interactions
- Conclusion

Will AI Replace Radiologists?

night 2017

tagxedo

Fig 1. Word cloud of titles of the top 25 nonscientific results from a Google (Menlo Park, California) search of the terms "artificial intelligence radiology."

Yi, Paul H. et al., Artificial Intelligence and Radiology: Collaboration Is Key Journal of the American College of Radiology, Volume 15, Issue 5, 781 - 783

NOVEMBER 15, 2017

Stanford algorithm can diagnose pneumonia better than radiologists

Stanford researchers have developed a deep learning algorithm that evaluates chest X-rays for signs of disease. In just over a month of development, their algorithm outperformed expert radiologists at diagnosing pneumonia.

BY TAYLOR KUBOTA

Stanford researchers have developed an algorithm that offers diagnoses based off chest X-ray images. It can diagnose up to 14 types of medical conditions and is able to diagnose pneumonia better than expert radiologists working alone. A <u>paper</u> about the algorithm, called CheXNet, was published Nov. 14 on the open-access, scientific preprint website arXiv.

"Interpreting X-ray images to diagnose pathologies like pneumonia is very challenging, and we know that there's a lot of variability in the diagnoses radiologists arrive at," said Pranav Rajpurkar, a graduate student in the <u>Stanford Machine Learning Group</u> and co-lead author of the paper. "We became interested in developing machine learning algorithms that could learn from hundreds of thousands of chest Xray diagnoses and make accurate diagnoses."

The work uses a public dataset initially released by the National Institutes of Health Clinical Center on Sept. 26. That dataset contains

Radiologist Matthew Lungren, left, meets with graduate students Jeremy Irvin and Pranav Rajpurkar to discuss the results of detections made by the algorithm. A tool the researchers developed along with the algorithm produced these images, which are similar to heat maps and show the areas of the X-ray most indicative of pneumonia. (*Image credit: L.A. Cicero*)

112,120 frontal-view chest X-ray images labeled with up to 14 possible pathologies. It was released in tandem with an algorithm that could diagnose many of those 14 pathologies with some success, designed to encourage others to advance that work. As soon as they saw these materials, the <u>Machine Learning Group</u> – a group led by <u>Andrew Ng</u>, adjunct professor of computer science – knew it had found its next research direction.

Harvard Business Review

INNOVATION

AI Will Change Radiology, but It Won't Replace Radiologists

by Thomas H. Davenport and Keith J. Dreyer, DO

MARCH 27, 2018

CORBIS/VCG/GETTY IMAGES

Recent advances in artificial intelligence have led to speculation that AI might one day replace human radiologists. Researchers have developed deep learning neural networks that can identify pathologies in radiological images such as bone fractures and potentially cancerous lesions, in some cases more reliably than an average radiologist. For the most part, though, the best systems are currently on par with human performance and are used only in research settings.

Current MDACC radiologist's workspace...

Unread Studies Worklist

EMR Data

Implements PACS-EMR Integration

PACS Display

-18 years of prior study images available for immediate retrieval -16,000 studies/month originating from outside imaging centers.

> Radiology leverages Same Snapshot as providers

70 inch display span

Automatic Display of current and relevant prior images

History: Lymphoma Indication: Chest Pain

History: Lymphoma Indication: Chest Pain

Diagnosis: Left PTX, < 15% RVU: **O.2** Patient Outcome: Observation Time Spent: < 2 minutes

History: Lymphoma Indication: Chest Pain Diagnosis: Left PTX, < 15% RVU: **0.2** Patient Outcome: Observation Time Spent: < 2 minutes

No need to include: "Clinical Correlation is Recommended"

No annotations placed.

Harvard Business Review

Stanford | News

Search Stanford news...

Home Find Stories For Journalists Contact

NOVEMBER 15, 2017

Stanford algorithm can diagnose pneumonia better than radiologists

Stanford researchers have developed a deep learning algorithm that evaluates chest X-rays for signs of disease. In just over a month of development, their algorithm outperformed expert radiologists at diagnosing pneumonia.

BY TAYLOR KUBOTA

Stanford researchers have developed an algorithm that offers diagnoses based off chest X-ray images. It can diagnose up to 14 types of medical conditions and is able to diagnose pneumonia better than expert radiologists working alone. A <u>paper</u> about the algorithm, called CheXNet, was published Nov. 14 on the open-access, scientific preprint website arXiv.

"Interpreting X-ray images to diagnose pathologies like pneumonia is very challenging, and we know that there's a lot of variability in the diagnoses radiologists arrive at," said Pranav Rajpurkar, a graduate student in the Stanford Machine Learning Group and co-lead author of the paper. "We became interested in developing machine learning algorithms that could learn from hundreds of thousands of chest Xray diagnoses and make accurate diagnoses."

Radiologist Mathew Lungren, left, meets with graduate students Jeremy Irvin and Pranav Rajnurkar to discuss the results of detections made by the algorithm. A tool the researchers developed along with the algorithm produced these images, which are similar to heat maps and show the areas of the X-ray most indicative of pneumonia. (*Image credit: LA* (*Cicero*)

112,120 frontal-view chest X-ray images labeled with up to 14 possible pathologies. It was released in tandem with an algorithm that could diagnose many of those 14 pathologies with some success, designed to encourage others to advance that work. As soon as they saw these materials, the Machine Learning Group – a group led by Andrew Ng, adjunct professor of computer science – knew it had found its next research direction.

INNOVATION

AI Will Change Radiology, but It Won't Replace Radiologists

by Thomas H. Davenport and Keith J. Dreyer, DO

MARCH 27, 2018

CORBIS/VCG/GETTY IMAGES

Recent advances in artificial intelligence have led to speculation that AI might one day replace human radiologists. Researchers have developed deep learning neural networks that can identify pathologies in radiological images such as bone fractures and potentially cancerous lesions, in some cases more reliably than an average radiologist. For the most part, though, the best systems are currently on par with human performance and are used only in research settings.

Will AI Replace Radiologists? Answer: Red Pill or Blue Pill?

R

Ε

Α

Н

Ρ

Ε

This is your last Chance.... After this, there is no turning back. You take the blue pill, the story ends. You wake up in your bed and believe whatever you want to believe. You take the red pill, you stay in Wonderland and I'll show you how deep the rabbit-hole goes..... Remember, all I'm offering you it's the truth, nothing more...

Imaging Value Process: Patient Context

- Orders
 - Appropriate for the patient's complete presentation
- Protocols
 - Optimized to inform the clinical decision process
- Acquisition
 - Optimized to inform at safest level, greatest clinical data
- Interpretation
 - Focus on findings pertinent to patient
- Reports
 - Optimized to efficiently communicate and inform the care process as well as the patient

Machine Learning

- Subfield of computer science that gives computers the ability to learn without being explicitly programmed
- Simply, ML is the science of teaching computers how to learn, in an effort to glean information from data that more conventional statistical approaches may not be able to achieve

Machine Learning

- Arises at the intersection of statistics, which seeks to learn relationships from data, and computer science, with its emphasis on efficient computing algorithms.
- Evolved from the study of pattern recognition and computational learning theory in artificial intelligence.
- Explores the study and construction of algorithms that can learn from and make predictions on data.
- Goal of ML algorithm is to develop a mathematical model that fits the data.

Image-net.org

- ImageNet collaboration maintains a large dataset

 (approximately 14 million images) labeled with nouns related to the content of each image
- Sponsors annual competition to test accuracy of image recognition algorithms

David Yanofsky | Quartz

Image Classification.

Blueberry muffin or chihuahua?

Fried chicken or labradoodle?

Image-net.org

- ImageNet collaboration maintains a large dataset

 (approximately 14 million images) labeled with nouns related to the content of each image
- Sponsors annual competition to test accuracy of image recognition algorithms

David Yanofsky | Quartz

CAD vs. Machine Learning

- Computer-aided diagnosis
 - Assessment of pre-determined image characteristics
 - Prior knowledge of association to disease
 - Example: Mammography Micro-calcifications
- Machine Learning
 - Image analysis without pre-determined characteristics
 - Analysis process groups images through "identified characteristics"
 - Identified features may or may not be determined
 - Outcome: observe if the grouping properly classifies known disease processes

CAD vs. Machine Learning

Fig 5. Schematic demonstrating the comparison of conventional hand-crafted computer-aided diagnosis and radiomic features, convolutional neural network (CNN)-extracted features, and an ensemble technique in the task of distinguishing between lesion type as used in Antropova et al [37] and Huynh et al [42].

Giger, ML , Machine Learning in Medical Imaging. J Am Coll Radiol 2018;15:512-520

Radiology image classification...

- Abnormality present (y/n)
- Infection, lung cancer, metastasis?
- Staging of detected lesion location, size, characteristics

Machine Learning Data Sets

• Training

- Image set to initially establish "hyper-parameters"
- Test
 - Dataset to determine outcome of training
- Validation
 - Final test of Algorithm
 - Dataset not previously "known" to algorithm
 - Determination accuracy (sensitivity/specificity)
 - Avoid "overfitting" of the algorithm
 - Validation cases should be accounted for in the basis of algorithm
 - "Retesting" validation set leads to overfitting

https://vitalflux.com/wp-content/uploads/2015/02/fittings.jpg

Development and Validation of Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans

Sasank Chilamkurthy¹, Rohit Ghosh¹, Swetha Tanamala¹, Mustafa Biviji², Norbert G. Campeau³, Vasantha Kumar Venugopal⁴, Vidur Mahajan⁴, Pooja Rao¹, and Prashant Warier¹

¹Qure.ai, Mumbai, IN ²CT & MRI Center, Nagpur, IN ³Department of Radiology, Mayo Clinic, Rochester, MN ⁴Centre for Advanced Research in Imaging, Neurosciences and Genomics, New Delhi, IN

Abstract

Importance Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or stroke symptoms.

Objective To develop and validate a set of deep learning algorithms for automated detection of following key findings from non-contrast head CT scans: intracranial hemorrhage (ICH) and its types, intraparenchymal (IPH), intraventricular (IVH), subdural (SDH), extradural (EDH) and subarachnoid (SAH) hemorrhages, calvarial fractures, midline shift and mass effect.

Design and Settings We retrospectively collected a dataset containing 313,318 head CT scans along with their clinical reports from various centers. A part of this dataset (Qure25k dataset) was used to validate and the rest to develop algorithms. Additionally, a dataset (CQ500 dataset) was collected from different centers in two batches B1 & B2 to clinically validate the algorithms.

Main Outcomes and Measures Original clinical radiology report and consensus of three independent radiologists were considered as gold standard for Qure25k and CQ500 datasets respectively. Area under receiver operating characteristics curve (AUC) for each finding was primarily used to evaluate the algorithms.

Results Qure25k dataset contained 21,095 scans (mean age 43.31; 42.87% female) while batches B1 and B2 of CQ500 dataset consisted of 214 (mean age 43.40; 43.92% female) and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively. For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset were 0.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were 0.9624, 0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention. This opens up the possibility to use these algorithms to automate the triage process. They may also provide a lower bound for quality and consistency of radiological interpretation.

https://arxiv.org/abs/1803.05854

• Non-contrast head CT

• 313,318 scans/reports

- 21,000 validate "Cure 25"
- 292,000 test
- Clinical validation "CQ500
 - 214 studies "B1"
 - 277 studies "B2"

Training > Test > Validation>

Development and Validation of Deep Learning Algorithms for Detection of Critical Findings in Head CT Scans

Sasank Chilamkurthy¹, Rohit Ghosh¹, Swetha Tanamala¹, Mustafa Biviji², Norbert G. Campeau³,

Results Qure25k dataset contained 21,095 scans (mean age 43.31; 42.87% female) while batches B1 and B2 of CQ500 dataset consisted of 214 (mean age 43.40; 43.92% female) and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively. For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset were 0.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were 0.9624, 0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention. This opens up the possibility to use these algorithms to automate the triage process. They may also provide a lower bound for quality and consistency of radiological interpretation.

and 277 (mean age 51.70; 30.31% female) scans respectively. On Qure25k dataset, the algorithms achieved AUCs of 0.9194, 0.8977, 0.9559, 0.9161, 0.9288 and 0.9044 for detecting ICH, IPH, IVH, SDH, EDH and SAH respectively. AUCs for the same on CQ500 dataset were 0.9419, 0.9544, 0.9310, 0.9521, 0.9731 and 0.9574 respectively. For detecting calvarial fractures, midline shift and mass effect, AUCs on Qure25k dataset were 0.9244, 0.9276 and 0.8583 respectively, while AUCs on CQ500 dataset were 0.9624, 0.9697 and 0.9216 respectively.

Conclusions and Relevance This study demonstrates that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention. This opens up the possibility to use these algorithms to automate the triage process. They may also provide a lower bound for quality and consistency of radiological interpretation.

Scope of Algorithm

- Non-contrast head CT scans
- Pathology
 - Intracranial hemorrhage (ICH)
 - Intraparenchymal (IPH)
 - Intraventricular (IVH)
 - Subdural (SDH)
 - Extradural (EDH)
 - Subarachnoid (SAH) hemorrhages
 - Calvarial fractures
 - Midline shift
 - Mass effect

Figure 3: Receiver operating characteristic (ROC) curves for the algorithms on Qure25k and CQ500 datasets. Blue lines are for the Qure25k dataset and Red lines are for the CQ500 dataset. Readers' TPR and FPR against consensus on CQ500 dataset are plotted along with the ROCs for comparison

Al: Pneumonia Detection

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

 $\begin{array}{rl} & \mbox{Pranav Rajpurkar}^{*1} \ \ \mbox{Jeremy Irvin}^{*1} \ \ \mbox{Kaylie Zhu}^1 \ \ \mbox{Brandon Yang}^1 \ \ \mbox{Hershel Mehta}^1 \\ & \mbox{Tony Duan}^1 \ \ \mbox{Daisy Ding}^1 \ \ \mbox{Aarti Bagul}^1 \ \ \mbox{Robyn L. Ball}^2 \ \ \mbox{Curtis Langlotz}^3 \ \ \mbox{Katie Shpanskaya}^3 \\ & \mbox{Matthew P. Lungren}^3 \ \ \mbox{Andrew Y. Ng}^1 \end{array}$

Abstract

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural network trained on ChestX-ray14, currently the largest publicly available chest Xray dataset, containing over 100,000 frontalview X-ray images with 14 diseases. Four practicing academic radiologists annotate a test set, on which we compare the performance of CheXNet to that of radiologists. We fible that (CheXNet and the fibre of the context) diologist performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-ray14 and achieve state of the art results on all 14 diseases.

1. Introduction

More than 1 million adults are hospitalized with pneumonia and around 50,000 die from the disease every year in the US alone (CDC, 2017). Chest X-rays are currently the best available method for diagnosing pneumonia (WHO, 2001), playing a crucial role in clinical care (Franquet, 2001) and epidemiological studies (Cherian et al., 2005). However, detecting pneumonia in chest X-rays is a challenging task that relies on the availability of expert radiologists. In this work, we present a model that can automatically detect pneumonia from chest X-rays at a level exceeding practicing radiologists.

Figure 1. CheXNet is a 121-layer convolutional neural network that takes a chest X-ray image as input, and outputs the probability of a pathology. On this example, CheXnet correctly detects pneumonia and also localizes areas in the image most indicative of the pathology.

Our model, ChexNet (shown in Figure 1), is a 121layer convolutional neural network that inputs a chest X-ray image and outputs the probability of pneumonia

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

^{*}Devel sectorily low ford Heimster Deve

Cornell University Library

arXiv.org > cs > arXiv:1711.05225

Search or Artic

Computer Science > Computer Vision and Pattern Recognition

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew Y. Ng

(Submitted on 14 Nov 2017 (v1), last revised 25 Dec 2017 (this version, v3))

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural network trained on ChestX-ray14, currently the largest publicly available chest X-ray dataset, containing over 100,000 frontal-view X-ray images with 14 diseases. Four practicing academic radiologists annotate a test set, on which we compare the performance of CheXNet to that of radiologists. We find that CheXNet exceeds average radiologist performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-ray14 and achieve state of the art results on all 14 diseases.

Subjects: Computer Vision and Pattern Recognition (cs.CV); Learning (cs.LG); Machine Learning (stat.ML) Cite as: arXiv:1711.05225 [cs.CV] (or arXiv:1711.05225v3 [cs.CV] for this version)

Submission history

From: Pranav Rajpurkar [view email] [v1] Tue, 14 Nov 2017 17:58:50 GMT (16273kb,D) [v2] Sat, 25 Nov 2017 04:21:27 GMT (321kb,D) [v3] Mon, 25 Dec 2017 11:09:06 GMT (321kb,D)

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

(a) Patient with multifocal community acquired pneumonia. The model correctly detects the airspace disease in the left lower and right upper lobes to arrive at the pneumonia diagnosis.

(b) Patient with a left lung nodule. The model identifies the left lower lobe lung nodule and correctly classifies the pathology.

(c) Patient with primary lung malignancy and two large masses, one in the left lower lobe and one in the right upper lobe adjacent to the mediastinum. The model correctly identifies both masses in the X-ray.

(d) Patient with a right-sided pneumothroax and chest tube. The model detects the abnormal lung to correctly predict the presence of pneumothorax (collapsed lung).

(e) Patient with a large right pleural effusion (fluid in the pleural space). The model correctly labels the effusion and focuses on the right lower chest.

(f) Patient with congestive heart failure and cardiomegaly (enlarged heart). The model correctly identifies the enlarged cardiac silhouette.

Figure 2. CheXNet localizes pathologies it identifies using Class Activation Maps, which highlight the areas of the X-ray that are most important for making a particular pathology classification. The captions for each image are provided by one of the practicing radiologists.

GINAL RESEARCH 💻 **THORAGIC IMAGIN**

Paras Lakhani, MD

Baskaran Sundaram, MD

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks¹

To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs.

Four deidentified HIPAA-compliant datasets were used in this study that were exempted from review by the institutional review board, which consisted of 1007 posteroanterior chest radiographs. The datasets were split into training (68.0%), validation (17.1%), and test (14.9%). Two different DCNNs, AlexNet and GoogLeNet, were used to classify the images as having manifestations of pulmonary TB or as healthy. Both untrained and pretrained networks on ImageNet were used, and augmentation with multiple preprocessing techniques. Ensembles were performed on the best-performing algorithms. For cases where the classifiers were in disagreement, an independent boardcertified cardiothoracic radiologist blindly interpreted the images to evaluate a potential radiologist-augmented workflow. Receiver operating characteristic curves and areas under the curve (AUCs) were used to assess model performance by using the DeLong method for statistical comparison of receiver operating characteristic curves.

ults: The best-performing classifier had an AUC of 0.99, which was an ensemble of the AlexNet and GoogLeNet DCNNs. The AUCs of the pretrained models were greater than that of the untrained models (P < .001). Augmenting the dataset further increased accuracy (P values for AlexNet and GoogLeNet were .03 and .02, respectively). The DCNNs had disagreement in 13 of the 150 test cases, which were blindly reviewed by a cardiothoracic radiologist, who correctly interpreted all 13 cases (100%). This radiologist-augmented approach resulted in a sensitivity of 97.3% and specificity 100%.

Conclusion: Deep learning with DCNNs can accurately classify TB at chest radiography with an AUC of 0.99. A radiologist-augmented approach for cases where there was disagreement among the classifiers further improved accuracy.

°RSNA, 2017

versity Hospital, Sidney Kimmel Jefferson Medical College, 132 S 10th St, Room 1080A, Main Building, Philadelphia, PA 19107-5244. Received October 5, 2016; revision requested November 23; revision received December 12; accepted January 9, 2017; final version accepted January 19. Address correspondence to P.L. (e-mail: paras. lakhani@efferson.edu).

From the Department of Radiology, Thomas Jefferson Uni-

© RSNA, 2017

radiology.rsna.org • Radiology: Volume 284: Number 2-August 2017

Purpose:

Materials and

Methods:

574

Table 3

AUC Test Dataset

Parameter	Untrained	Pretrained	Untrained with Augmentation*	Pretrained with Augmentation*
AlexNet GoogLeNet	0.90 (0.84, 0.95) 0.88 (0.81, 0.92)	0.98 (0.95, 1.00) 0.97 (0.93, 0.99)	0.95 (0.90, 0.98) 0.94 (0.89, 0.97)	0.98 (0.94, 0.99) 0.98 (0.94, 1.00)
Ensemble	0.00 (0.01, 0.02)	0.07 (0.00, 0.00)	0.04 (0.00, 0.07)	0.99 (0.96, 1.00)

Note.—Data in parentheses are 95% confidence interval.

* Additional augmentation of 90, 180, 270 rotations, and Contrast Limited Adaptive Histogram Equalization processing.

Figure 2

a.

Figure 2: (a) Comparison of receiver operating characteristic curves for the untrained AlexNet-U and GoogLeNet-U models and pretrained with augmentation AlexNet-TA and GoogLeNet-TA models. The receiver operating characteristic curves for the AlexNet-TA and GoogLeNet-TA models had an AUC that was significantly greater than that for the untrained AlexNet-U and GoogLeNet-U models (P < .001) (Table 3). (b) Comparison of receiver operating characteristic curves for the AlexNet-TA, GoogLeNet-TA, and ensemble of the two models. The ensemble provided the best AUC (Table 3).

Barriers to Machine Learning in Radiology

- Limited publically available image training datasets
 - Current annotation processes FTE intensive
 - Radiology reporting not aligned to dataset annotation
- Lack of universal standard for image annotation
 - Several standard available (DICOM SR)
- Thousands of imaging use cases

AI IN CLINICAL DIAGNOSTICS

	MAGNETIC RESONANCE	COMPUTED TOMOGRAPHY	POSITRON EMISSION	RADIOGRAPHY	ANGIOGRAPHY	ULTRASOUND	FLUOROSCOPY	
ABDOMINAL IMAGING								
BREAST IMAGING				T. Harrison Concerning				FINDINGS
CARDIAC IMAGING								FINDINGS
EMERGENCY IMAGING								FINDINGS
THROACIC IMAGING				and the second se	Constant States			FINDINGS
NEURORADIOLOGY			1 mil					FINDINGS
NUCLEAR MEDICINE					/			FINDINGS
PEDIATRIC IMAGING								FINDINGS
MUSCULOSKELETAL					1			FINDINGS
INTERVENTIONAL			1					FINDINGS
	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	

©ACR 2018
AI: Defining High Value Use Cases

AI IN CLINICAL DIAGNOSTICS

	MAGENTIC RESONANCE	COMPUTED TOMOGRAPHY	POSITRON EMISSION	RADIOGRAPHY	ANGIOGRAPHY	ULTRASOUND	FLUOROSCOPY	
ABDOMINAL IMAGING								
BREAST IMAGING								FINDINGS
CARDIAC IMAGING								FINDINGS
EMERGENCY IMAGING						//		FINDINGS
THORACIC IMAGING				PULMO	NARY NODU	JLES		FINDINGS
NEURORADIOLOGY			h					FINDINGS
NUCLEAR MEDICINE		J						FINDINGS
PEDIATRIC IMAGING		FUNG						FINDINGS
MUSCULOSKELETAL								FINDINGS
INTERVENTIONAL			1					FINDINGS
	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	ANATOMY	

©ACR 2018

Lung-RADS™ Version 1.0 Assessment Categories Release date: April 28, 2014

Category	Category Descriptor	Category	Findings	Management	Probability of Malignancy	Estimated Population Prevalence
Incomplete	-	0	prior chest CT examination(s) being located for comparison	Additional lung cancer screening CT images and/or comparison to prior chest CT examinations is needed	n/a	1%
	No no dulas an 1		part or all of lungs cannot be evaluated	comparison to prior criese of examinations is needed		
Negative	No nodules and definitely benign	1	no lung nodules	4		
Inc Bacine	nodules	1	nodule(s) with specific calcifications: complete, central, popcorn, concentric rings and fat containing nodules			
			solid nodule(s):	1		
			< 6 mm			
			new < 4 mm	Continue annual screening with		
Benign	Nodules with a very low		part solid nodule(s):	Continue annual screening with LDCT in 12 months	< 1%	90%
Appearance	likelihood of becoming a	2	< 6 mm total diameter on baseline screening			
or Behavior	clinically active cancer due to size or lack of growth		non solid nodule(s) (GGN):			
	to size of lack of growth		< 20 mm OR			
			≥ 20 mm and unchanged or slowly growing			
			category 3 or 4 nodules unchanged for ≥ 3 months			
			solid nodule(s):			
	Probably benign		≥ 6 to < 8 mm at baseline_OR			
	finding(s) - short term follow up suggested;		new 4 mm to < 6 mm		1-2%	
Probably	includes nodules with a	3	part solid nodule(s)	6 month LDCT		5%
Benign	low likelihood of		≥ 6 mm total diameter with solid component < 6 mm OR			
	becoming a clinically		new < 6 mm total diameter			
	active cancer		non solid nodule(s) (GGN) ≥ 20 mm on baseline CT or new			
			solid nodule(s):			
			≥ 8 to < 15 mm at baseline OR			
			growing < 8 mm OR			
			new 6 to < 8 mm	3 month LDCT; PET/CT may be used when there is		
		4A	part solid nodule(s:	a ≥ 8 mm solid component	5-15%	2%
			≥ 6 mm with solid component ≥ 6 mm to < 8 mm OR			
	Findings for which		with a new or growing < 4 mm solid component			
Cumisians	additional diagnostic		endobronchial nodule			
Suspicious	testing and/or tissue sampling is		solid nodule(s)			
	recommended		≥ 15 mm OR			
		-	new or growing, and ≥ 8 mm	chest CT with or without contrast, PET/CT and/or		
		4B	part solid nodule(s) with:	tissue sampling depending on the *probability of	> 15%	2%
			a solid component ≥ 8 mm OR	malignancy and comorbidities. PET/CT may be	> 13%	270
			a new or growing ≥ 4 mm solid component	used when there is a ≥ 8 mm solid component.		
			Category 3 or 4 nodules with additional features or imaging findings that	1		
		4X	increases the suspicion of malignancy			
	Clinically Significant or					

AI/ML Roadblocks

- Data Integrity
 - Collection and curation of vetted datasets
 - Costly data annotation (retrospective)
- Sharing and Pooling of Datasets
 - Models need large datasets to create, test and validate
 - Lots of ready consumers...
- Network Infrastructure
 - Image datasets and ancillary information
 - Cloud-based processes likely
- Privacy and security of pooled data
 - Anonymization processes

AI/ML Roadblocks

• FDA

- Algorithm validation
 - Likely more formalized infrastructure
- Medical-legal
 - "Replace radiologist" who assumes liability?

ML: Patient Scheduling

- MDACC unique challenge is large number of patients from outside of Houston area who on follow-up visits require imaging prior to clinical appointment.
- Machine Learning opportunity: Create patient schedules, based upon patient preference, optimize patient's schedule to reduce time in Houston on return visit
- Status: in pilot testing

PVD Schedule	P	rior Patient Next Pa	ient Next Conflict	Prv Img Conf		mg Conf	THE VILLAGES, Florida 3210								
APPTtime	Tue MAIN	4/04 MAYS	ROC	Wed MAIN	4/05 MAYS	ROC	Thu MAIN	4/06 MAYS	ROC	Fri MAIN	4/07 MAYS	ROC			
6-00 AM															
6:15 AM															
6:30 AM															
6:45 AM															
7:00 AM															
7:15 AM															
7:30 AM															
7:45 AM															
8:00 AM		DIAG CTR LAR*													
8-15 AM		LAR													
8-30 AM		ICT~ IMAYS													
8:45 AM		CT CHEST WO CON													
9:00 AM		MAYS CT 15		I											
9-15 AM		85													
9:30 AM		25													
9.45 AM		25													
10:00 AM		PETICT~ IM		1											
10-15 AM		PETICT		1											
10:30 AM		MAYS PETCT A		1											
10:45 AM		150		1											
11:00 AM		150		1											
11.15 AM		150		ENDOCB CTB~											
11:30 AM		150		ENDOCRINE FOLLO								-			
11:45 AM		150													
12:00 PM		30		1											
12:10 PM 12:15 PM															
12:15 PM 12:30 PM		511													
12:30 PM 12:45 PM							——								
1/245 PM															
1-00 PM															
1-15 PM															
1-30 PM												<u> </u>			
1:45 PM															
2:00 PM							———								
2:15 PM															
2:30 PM		NEUBO US*								_					
2:45 PM		LIS THYBOID NIB								_		<u> </u>			
3:00 PM		MAYS NELIBOLIS B								_		L			
3:15 PM		60										<u> </u>			
3:30 PM		60			ļ										
3:45 PM															
4-00 PM															
4·15 PM			MBI~ IBOC												
4:30 PM			MBLARDOMEN W												
4:45 PM			BOC MB 21												
5:00 PM			60												
5:15 PM			60												
5:30 PM			60												
5:45 PM			60												
6:00 PM			MBI~ IBOC												
6·15 PM			MBI PELVIS W WO			1									
6:30 PM			BOC MB 21												
6:45 PM			60												
7:00 PM		1				1									
7:15 PM		1				1									
7:30 PM				1											
7.45 PM				1											
8:00 PM				1											
8-15 PM				1											
8:30 PM				1											
8:45 PM				1								-			
9:00 PM				1								-			
9.15 PM				1								-			
				-											
9:30 PM							——					-			
9:45 PM			1	-											

	Show PVD Schedule	Prior Patient Next Pati	Prv Img Conf	Next I	mg Conf]	THE	/ILLA	GES,	Florida	rida 3216		
	6:15 am 🔸	7:53 am	Nonstop	Wed MAIN	4/05 MAYS	ROC	Thu MAIN	4/06 MAYS	ROC	Fri MAIN	4/07 MAYS	ROC	
	Orlando, FL, US (MCO)	Houston, TX, US (IAH - Intercontinental)	2h 38m total										
	UA 1768 Boeing 737-900		?						_				
	7:45 AM	Revise flight	Details Seats										
	8:00 AM	DIAG CTR LAR*		2. The Breakfast				Vard, Midtow	n			- 1	
	8:15 AM 8:30 AM	LAR CT~ IMAYS				hern		, TX 77002				- 1	
	8:45 AM	CT CHEST WO CON		Good for Breakfas	ŧ		(713) 52	8-8061				- 1	
	9:00 AM 9:15 AM	MAYS CT 15 85										- 1	
	9:30 AM	25											
	9:45 AM 10:00 AM	25 PETICT~ IM										- 8	
	10:15 AM	PETICI										- 1	
	10:30 AM	MAYS PETCT A											
	10:45 AM 11:00 AM	150 150				_						- 8	
	11:15 AM	150		ENDOCB CTB*								1	
	11:30 AM 11:45 AM	150 150		ENDOCRINE FOLLO		_						- 8	
	12:00 PM	30										- 1	
	12:15 PM	30											
	12:30 PM 12:45 PM					_						- 11	
	1.00 PM												
	1:15 PM 1:30 PM					_						- 8	
	1:45 PM											- 1	
	2:00 PM												
	2:15 PM 2:30 PM	NEUBO US*				_						- 11	
	2:45 PM	US THYBOID NIB											
	3:00 PM 3:15 PM	MAYS NEUBO US B 60				_						- 8	
	3:30 PM	60										- 1	
	3:45 PM												
	4·00 PM 4·15 PM		MBI~ IBOC	4:06 pm	<u> </u>	7.26	000			Nonst		- 11	
4:57 pm → 6:34 pm Nonstop	4:30 PM		MRI ARDOMEN W		}	7:26					· _		
Orlando, FL, US (MCO) Houston, TX, US (IAH - 2h 37m total Intercontinental)	4:45 PM 5:00 PM		BOC MB 21 60	Houston, TX, US (IAH - Intercontinental)		Orlando,	, FL, US (N	100)		2h 20m toi			
	5:15 PM		60									î	
UA 1527 Boeing 737-900	5:30 PM		60	UA 1644 Boeing 737-9	900					4	<u>ि</u>		
Revise flight Details Seats	5:45 PM 6:00 PM		60 MBI~ IBOC							h =		- 11	
	6:15 PM		MBI PELVIS W WO				Revise flig	nt 🕨	Details	Sear	ts		
	6:30 PM 6:45 PM		BOC MB 21 60			_						- 1	
	7:00 PM)	
Considerability Contract Manufacture Construction Data	7·15 PM	0.0000		De ele									
SpringHill Suites Houston Medical Center/NRG Park 1400 Old Spanish Trail Houston, Texas 77054			es Houston Medical Center/NRG sh Trail Houston, Texas 77054		HILL SUITES							- 1	
5.2 miles from Houston	MARRIGTT	5.2 miles from	Houston	MAI	RRIGTT								
●●●●●● 4.3/5	From		4.3/5	From								- 11	
Houston hotel ideally located minutes away from Texas	166 USD/night		ideally located minutes away fron	n Texas 166	USD/night								
Medical Center, VA Hospital and NRG Park	View Rates —		, VA Hospital and NRG Park	View	Rates							- 8	
 			beed Internet 🛛 Free breakfas ter & Assission Assis	τ)	
	.												
	Marine and Annual An												

		Show PVD Schedule		PVD Schedule Prior Patient Next Patient Next Conflict			Prv Img Conf	Next	Img Conf		THE	THE VILLAGES,			a 321	62	Ur	nite	d
		APPTtime	Tue MAIN	4/04 MAYS	ROC	Wed	MAIN	4/05 MAYS	ROC	Thu MAIN	4/06 MAYS	ROC	Fri MAIN	4/07 MAYS	ROC	S	4 №	F	S
6:15 am → Orlando, FL, US (MCO)	7:53 am Houston, TX, US (IAH - Intercontinental)	Nonstop 2h 38m total																	
UA 1768 Boeing 737-900		Ŷ											-				$\left \right $	÷	
	Revise flight	Details Seats																ł	
8:00 am + Orlando, FL, US (MCO)	9:39 aM Houston, TX, US (IAH - Intercontinental)	Nonstop 2h 39m total		DIAG CTB LAB* LAB CT* IMAYS CT CHEST WO CON														1	
UA 788 Boeing 737-900				MAYS CT 15 85														t	
	Revise flight	10:00 AM 10:05 AM 10:05 AM 10:05 AM 11:00 AM 11:05 AM 11:00 AM 11:15 AM 11:15 AM 12:00 PM 12:15 PM 12:30 PM 1:25 PM 1:30 PM 1:45 PM 2:00 PM 2:30 PM 2:30 PM		25 PFT CT M PFT CT MAYS PFTCT A 150 150 150 150 150 			CR CTR~ CRINE FOLLO												
		2:45 PM 3:00 PM 3:15 PM 3:30 PM 3:30 PM 3:45 PM 4:00 PM		US THYBOID NIB MAYS NEURO US B 60 60															
		4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:30 PM 6:30 PM			MBI IBDC MBLARDOMEN W BDC.MB 21 60- 60- 60- 60- 60- 60- 60- 60- MBI 60- MBI IBDC MBI IBDC MBI 1000 21 21	Hou Inte	D6 pm +) ston, TX, US (IAH - rcontinental) 1644 Boeing 737-90			PM FL, US (M Revise flig	-	Details	Nonsto 2h 20m tot Seat	al					i
		6:30 PM 6:45 PM 7:00 PM 7:15 PM 7:30 PM 7:45 PM 8:10 PM 8:15 PM 8:30 PM 8:45 PM 9:00 PM 9:15 PM 9:30 PM 9:345 PM 10:00 PM		1. Oxheart SSSS - American (New reel like I am so late to the game v oses to revamp and I am so glad	veviews w) when it comes	14 5. H. M ©	oringHill Suites Housto 100 Old Spanish Trail H 2 miles from Houston 0 0 0 4.3/5 100 0 4.3/5 100 0 0 4.3/5 100 0 0 0 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 0 100 0 100 0 0 100 0	ouston, Tex ated minut ital and NR net î f	kas 77054 tes away froi G Park	m Texas		From 166	USD/night						

ML: Imaging Protocols

Journal of Digital Imaging https://doi.org/10.1007/s10278-018-0066-y

Efficiency Improvement in a Busy Radiology Practice: Determination of Musculoskeletal Magnetic Resonance Imaging Protocol Using Deep-Learning Convolutional Neural Networks

Young Han Lee¹

© Society for Imaging Informatics in Medicine 2018

Abstract

The purposes of this study are to evaluate the feasibility of protocol determination with a convolutional neural networks (CNN) classifier based on short-text classification and to evaluate the agreements by comparing protocols determined by CNN with those determined by musculoskeletal radiologists. Following institutional review board approval, the database of a hospital information system (HIS) was queried for lists of MRI examinations, referring department, patient age, and patient gender. These were exported to a local workstation for analyses: 5258 and 1018 consecutive musculoskeletal MRI examinations were used for the training and test datasets, respectively. The subjects for pre-processing were routine or tumor protocols and the contents were word combinations of the referring department, region, contrast media (or not), gender, and age. The CNN Embedded vector classifier was used with Word2Vec Google news vectors. The test set was tested with each classification model and results were output as routine or tumor protocols. The CNN determinations were evaluated using the reference protocols. The optimal cut-off values for protocol as the reference protocols. The optimal cut-off values for protocol as the reference protocols. The optimal cut-off values for protocol determination between routine protocols and tumor protocols was 0.5067 with a sensitivity of 92.10%, a specificity of 95.76%, and an area under curve (AUC) of 0.977. The overall accuracy was 94.2% for the ConvNet model. All MRI protocols were criterio the pelvic bone, upper arm, wrist, and lower leg MRIs. Deep-learning-based convolutional neural networks were clinically utilized to determine

Fig. 2 Model architecture with two channels for the routine or tumor protocols of the musculoskeletal MRI

CrossMark

n x k representation of words

Convolutional layer with multiple filter widths and feature maps

Structured reporting will necessarily evolve to discrete data reporting...

ORIGINAL ARTICLE

CrossMark

Evaluating Report Text Variation and Informativeness: Natural Language Processing of CT Chest Imaging for Pulmonary Embolism

Marco D. Huesch, MBBS, PhD, Rekha Cherian, MD, Sam Labib, MD, Rickhesvar Mahraj, MD

Abstract

Objective: The aim of this study was to quantify the variability of language in free text reports of pulmonary embolus (PE) studies and to gauge the informativeness of free text to predict PE diagnosis using machine learning as proxy for human understanding.

Materials and Methods: All 1,133 consecutive chest CTs with contrast studies performed under a PE protocol and ordered in the emergency department in 2016 were selected from our departmental electronic workflow system. We used commercial text-mining and predictive analytics software to parse and describe all report text and to generate a suite of machine learning rules that sought to predict the "gold standard" radiological diagnosis of PE.

Results: There was extensive variation in the length of Findings section and Impression section texts across the reports, only marginally associated with a positive PE diagnosis. A marked concentration of terms was found: for example, 20 words were used in the Findings section of 93% of the reports, and 896 of 2,296 distinct words were each used in only one report's Impression section. In the validation set, machine learning rules had perfect sensitivity but imperfect specificity, a low positive predictive value of 73%, and a misclassification rate of 3%.

Conclusion: Use of free text reporting was associated with extensive variability in report length and report terms used. Interpretation of the free text was a difficult machine learning task and suggests potential difficulty for human recipients in fully understanding such reports. These results support the prospective assessment of the impact of a fully structured report template with at least some mandatory discrete fields on ease of use of reports and their understanding.

Key Words: Structured reporting, text analysis, pulmonary embolus, machine learning, variability, prediction, natural language processing, NLP

J Am Coll Radiol 2018;15:554-562. Copyright © 2018 Published by Elsevier Inc. on behalf of American College of Radiology

INTRODUCTION

It is accepted that structured templates represent the future of radiology reporting [1]. Despite early reports of no difference in information transfer efficiency [2], it is now clear that structured templates improve diagnostic

Department of Radiology, Milton S. Hershey Medical Center, Hershey,

yield within radiology [3] and are more user-friendly for clinical partners [4-6].

Beyond these benefits, structured reporting may enhance billing [7], lead to shorter reports that have been found easier for patients to understand [8], and be more useful for population health analytics and other research and operational data mining.

However, a large burden in productivity is placed on the radiologist who must use a structured template [9] and

Structured reporting will necessarily evolve to discrete data reporting...

ORIGINAL ARTICLE

Evaluating Report Text Variation and Informativeness: Natural Language Processing of CT Chest Imaging for Pulmonary Embolism

Results: There was extensive variation in the length of Findings section and Impression section texts across the reports, only marginally associated with a positive PE diagnosis. A marked concentration of terms was found: for example, 20 words were used in the Findings section of 93% of the reports, and 896 of 2,296 distinct words were each used in only one report's Impression section. In the validation set, machine learning rules had perfect sensitivity but imperfect specificity, a low positive predictive value of 73%, and a misclassification rate of 3%.

Conclusion: Use of free text reporting was associated with extensive variability in report length and report terms used. Interpretation of the free text was a difficult machine learning task and suggests potential difficulty for human recipients in fully understanding such reports. These results support the prospective assessment of the impact of a fully structured report template with at least some mandatory discrete fields on ease of use of reports and their understanding.

Key Words: Structured reporting, text analysis, pulmonary embolus, machine learning, variability, prediction, natural language processing, NLP

J Am Coll Radiol 2018;15:554-562. Copyright © 2018 Published by Elsevier Inc. on behalf of American College of Radiology

INTRODUCTION

It is accepted that structured templates represent the future of radiology reporting [1]. Despite early reports of no difference in information transfer efficiency [2], it is now clear that structured templates improve diagnostic

yield within radiology [3] and are more user-friendly for clinical partners [4-6].

Beyond these benefits, structured reporting may enhance billing [7], lead to shorter reports that have been found easier for patients to understand [8], and be more useful for population health analytics and other research end encertional data mining.

ML: Imaging Use Cases Beyond Interpretation

MDACC future ML radiologist's workspace...

Unread Studies Worklist

EMR Data

Radiologist will be informed by ML... Report product will transition to inform ML...

70 inch display span

Why AI Will Not Replace Radiologists...

Radiologists will also be empowered to become more 'doctor' than ever before, with productivity gains allowing more time communicating results to both clinicians and patients. I can certainly envisage radiologists as data communicators, both directly to clinical teams on their rounds and tumour boards, and even direct-to-patient information-giving.

Why AI will not replace radiologists, Hugh Harvey

https://towardsdatascience.com/why-ai-will-not-replace-radiologists-c7736f2c7d8o

Conclusions

- Initial reports of AI in imaging are promising
- Al and ML will have tremendous impact on imaging in the coming years.
- Application of AI will impact all processes within imaging, including the interpretation process.
 - Likely transition to increased quantitate reporting
 - Align reporting with data needed for algorithms
- Impacts in clinical decision support, scheduling, scanner operations, results delivery and review will be impacted with AI-based processes

Conclusions

Radiologists who refuse to incorporate AI into daily clinical practice will be replaced by radiologists who do...

although the generation of radiologists affected by ML transition TBD...