AI & Machine-learning in Physicians' Workflows

Doug McNair MD PhD

President, Cerner Math

June 23, 2017

"The CMIO role is gradually being transformed, particularly in more advanced health organizations, from its early 'tech-head doc' role, to a management role in IR implementation, to a transformational leadership role, to a role catalyzing discovery and translational research. Skills are needed to help lead <u>discovery</u>."

Introduction

- Evolution of CMIO role:
 - Beyond electronification of paper was quality and value (triple aim)
 - Beyond quality and value was enhancement of clinician experience
 - Beyond clinician experience is discovery via machine-learning and AI
- Confidentiality-protected, de-identified health records and registries enable new capabilities for observational research and discovery
- Most, if not all, of the opportunities to create value with data involve mathematical equations, classification or prediction models, or statistical patterns
- Most involve 'machine-learning' from observational data
- These are not your granddad's "IF-THEN" CDS algorithms

Definitions

- Artificial Intelligence (AI)
 - Computational emulation of effective goal-oriented behavior, often with deliberation and intention
- Machine Learning (ML)
 - Several dozen methods of empirical pattern detection

Factors that motivate ML – why, when, how

- Data missingness, rapid change, high-dimensionality, 'ensemble' robustness
- Curse of dimensionality evaluating every feature can reduce not only the speed of classifier training and execution, but reduces predictive power
- Unlike neural networks and some other ML methods, others like AdaBoost, Random Forest, and LASSO retain only those features that improve the predictive power of the model
- Biases, unbalanced data (things that cause conventional statistical models to go astray)

4

BRNDEXP 2.1 0714 © 2014 Cerner Corporation. All rights reserved. This document contains Cerner confidential and/or proprietary information belonging to Cern

This document contains Cerner confidential and/or proprietary information belonging to Cerner Corporation and/or its related affiliates which may not be reproduced or transmitted in any form or by any means without the express written consent of Cerner

ML to predict AKI before it materializes

June 26, 2017

Previous approaches' limitations

- Blood tests
 - Predictions confounded by variations in body composition, metabolism
 - Wide within-patient variability based on evolving patient management, fluids, etc.
 - Lagging indicators of renal deterioration
 - Creatinine changes significantly only when \sim 50%+ of function is lost
- Urine tests
 - Time-averaging by mixing/dilution in bladder → poor sensitivity
 - Lagging indicators of renal deterioration

AKI ML

- 40,000 inpatient AKI cases and 40,000 non-AKI inpatient controls
- Random Forest discovery of 3 parameters that are leading indicators
- Time series model combines velocity and doubling-time metrics
 - Serum creatinine or cystatin C
 - Serum uric acid
 - Red blood cell distribution width (RDW%)

(Other temporal metrics have poor sensitivity/specificity or require longer time series)

- Addresses assessment of risk of acute deterioration
 - Math predictive model only requires at a minimum 3 time points
 - Preferably 4 or more time points
 - Doubling-time ascertainment requires at least 4 time points
- Integrates with flowsheet clinician workflow
- Can trigger CDS initiation of prevention or AKI management ordersets

Example AKI pattern

post_adm (hr)	CysC (mg/L)	uric (mg/dL)	RDW (%)	Cr (mg/dL)	AKI prob (%)
-2.5	1.16	4.1	13.4	1.5	8
7.4	1.19	4.2	13.8	1.5	31
23.0	1.34	5.2	15.2	1.5	59
36.0	1.89	7.6	16.4	1.4	68
49.0	2.01	7.9	17.2	1.6	68
60.0	1.70	7.5	17.1	1.7	76
84.5	1.53	7.1	16.5	2.3	76

ROC - AKI prediction

Forecast ED Crowding with ML

June 26, 2017

Motivation

- ED congestion adverse health outcomes
- Patient experience with long and unpredictable waiting times
- ED service managers lack means for accurately predicting or preventing or managing the severity or duration of congestion
- Aim:
 - Determine quantitative 'self-similarity' properties of inter-arrival interval time series
 - Discover fractal 'self-similarity' pattern to forecast congestion
 - Provide managers with choices that will prevent or abate congestion

Prior approaches' limitations

- Fail to determine the patient-arrival, -care, and –departure processes
- Fail to determine the resource sourcing processes
- Require information that is either not available or updated frequently
- Lagging indicators that do not help prevent
- Fail to take into account finite bed capacity (saturation)
- Fail to account for dependencies between labor supply and demand

Forecasting congestion before it arrives

- Retrieve recent historical arrivals event time series data (e.g., previous 120 minutes' arrivals) for the service process of interest.
- Count arrival events accruing in consecutive time periods or epochs (e.g., epochs of 5-min length).
- Forecast congestion via fractal Hurst exponent time-series
- If the forecast Hurst exponent exceeds 75th percentile of ED length of stay, then emit message to ED manager

ED congestion forecasting

- ML model dynamically re-characterizes supply and demand processes for each resource
- Does not require constant updating by staff in other parts of the hospital
- Far simpler than NEDOCS and other approaches
- Reliably predicts future congestion 30 to 120 min ahead
 - Associated with ED Length of Stay (LOS) exceeding 75th percentile

ML for Tremor Management in Parkinson's Disease

June 26, 2017

Tremor management pharmaceutics in PD

- Carbidopa, L-dopa (1:4)
- Entacapone/tolcapone (COMT inhibs)
- Amantadine/rimantidine
- Rasagiline/selegiline (MAO-B inhibs)
- Benztropine/trihexyphenidyl (anticholinergics)
- Pramipexole/ropinirole/rotigotine/apomorphine (dopamine agonists)
- Pergolide/bromocryptine (ergot)
- Primidone/topiramate (anticonvulsants)
- Cannabidiol/dronabinol
- Botox injections

Management of motor fluctuations in PD

- Adjust levodopa
 - Change incremental dose and interval
 - Different formulation
- Add adjunctive agent(s)
 - Amantadine, MAO-B inhibitor, COMT inhibitor, Dopamine agonist, Anticholinergic, Anticonvulsant
- Injectable apomorphine as a "rescue" drug

Prior approaches' limitations

- Raw accelerometer data too insensitive, under-detect intentional/dynamic tremor
- Spiral drawing 'absolute amplitude' measurements require patient effort
- Goniometry sensors too cumbersome and require very careful placement
- Time-consuming, long measurement intervals
- Equipment was expensive and "fussy" to use
- Inadequate characterization of circadian variations in tremor intensity
- Unable to distinguish essential tremor from Parkinson's and 'mixed'
- Frequency bands of tremors
 - Resting (1-7 Hz)
 - Postural (8-15 Hz)
 - Kinetic (various freq bands; 20+ Hz)

ML of accelerometry waveforms

- Inexpensive wearable sensor device
- Initial clinical trial: neurology clinic use
 - Subsequent clinical trial: home use qid
- Telemetry of multiple 60-sec 3-axis accelerometer time series
 - Data upload can be at any convenient time
- Power spectrum reveals details of tremor activity
 - Circadian variations in tremor
- Time-averaged power in tremor-relevant frequency band can be used to optimize treatment modalities, dosing

Sensor device in elastic band

Example – "On" meds (green) vs. "Off" meds (red)

Example – Healthy control (green) vs. "Off" meds (red)

ML for predicting hyperand hypo-glycemic events

Motivation

- Complications of diabetes are strongly associated with frequency and severity of blood sugar fluctuations
 - Hypoglycemia (< 70 mg/dL)
 - Hyperglycemia (esp., > 250 mg/dL)
- Aim:
 - Machine-learning identifies patterns preceding hypo-/hyper-glycemia
 - Ad hoc self-monitoring glucose measurements using existing inexpensive glucometers and strips

Prior approaches' limitations

- Requires high-frequency measurements (continuous, seconds timescale, indwelling percutaneous sensor) at regular, periodic intervals
- Requires detailed, ongoing recording of food intake, physical activity, insulin and other medication doses
 - Plus calculating other variables derived from these (e.g, carbohydrate to insulin ratio)
- Requires additional monitoring (cumbersome; expensive; leads to disuse)
 - Heart rate variability; Skin galvanometry; Temperature measurements; Sleep actigraphy; Step-counting accelerometry
- Requires periodic laboratory testing
 - Insulin level, C-peptide, etc.
- Accuracy is often inadequate to guide decision-making and action
 - Especially during periods of infection, etc.
- Time-horizon of forecasts is too short
- Not equally suited to diabetes cases of different severity

Forecasting hypo- and hyperglycemia

- Calculate the root mean square of successive deviations (RMSSD) and entropy of glucose series
- Determine signal to be emitted and specific therapy adjustment advice
 - 'Exercise is not advised for the next 6 hours';
 - 'Bring extra juice or food with you today, on account of increased risk of hypoglycemia';
 - 'Bring extra insulin with you today, on account of increased risk of hyperglycemia';
 - 'Eat a larger snack at bedtime, on account of increased risk of predawn hypoglycemia'; etc.

Data used for ML in diabetes

- Type 1 diabetics
 - 566,905 distinct persons (JAN-2000 through DEC-2014)
 - Many with >1,000 serial glucose measurements, all date-time stamped with minute-wise time resolution
 - Dataset does not currently distinguish 'fingerstick' from 'alternate site' (thigh, forearm, etc.) measurements
- Future modeling of Type 2 diabetics' glucometer measurements

ROC – Hypoglycemia model

ROC – Hyperglycemia model

Comment

- ML involves quantitative measures of chaos (entropy) and spectrum analytic properties (RMSSD) of time series
- Forecasts future exceedances of low- and highthresholds of target glucose range, enabling effective preventive maneuvers
- Predictive accuracy is sustained despite wide variations in patient's self-monitoring and adherence (or not) to prescribed therapy

ML and IoT sensor data

June 26, 2017

qhs BLE IoT Beacon with temp sensor in RA patients

BLE IoT temp sensor beacon in RA patient before bedtime

21d healthy control vs. RA temp qhs q1m time series

This document contains Cerner confidential and/or proprietary information belonging to Cerner Corporation and/or its related affiliates which may not be reproduced or transmitted in any form or by any means without the express written consent of Cerner

21d healthy control vs. RA temp qhs q1m time series

A couple of books you may like...

Summary

- Discoveries mostly use machine-learning methods
- You may like to learn a little R
- Deep-learning and spectral processing methods are part of ML
- Many models involve IoT and sensor-bearing wearables and telemetry
- Many models involve parsing of concepts from unstructured text
- ML models usually involve math (not IF-THEN rules or flowcharts)
- Relatively few involve conventional statistical 'regression' models
- All involve mapped ontology for discovery and operations
- PMML model standard for 'open' interoperability/portability
- Supervised automapping of ontologies, for model variables
- Regulatory and governance policies are evolving
 - 21st Century Cures, FDA regulation, etc.

Summary (contin.)

- Health informatics: transformed by Big Data and New Data (IoT, etc.)
- Machine-learning and research: data-driven vs. hypothesis-driven
- Knowing 'what,' not 'why,' is sufficient to drive productive research
- Discovering patterns is within scope of CMIO role
- 'Translational research' is not just "bench-to-bedside"
- It is also translating the other direction: "bedside-to-bench," ML from astreated observational data
 - Discovering new screening, diagnostics, prognostics
 - From existing as-treated EHR-derived HIPAA-compliant de-identified Big Data
 - From new data (esp. 'omics, wearable sensors)
- Technology architecture matters (including quantum computing)
- Not everything is 'learnable'

BRNDEXP 2.1 0714 © 2014 Cerner Corporation. All rights reserved.

This document contains Cerner confidential and/or proprietary information belonging to Cerner Corporation and/or its related affiliates which may not be reproduced or transmitted in any form or by any means without the express written consent of Cerner

Summary (contin.)

- CMIOs have previously been preoccupied with MU and other initiatives
- CMIOs are increasingly catalysts of, and advocates for, discovery, from secondary-use assented de-identified EHR data
 - "Top 2 tiers of Dr. Landa's Maslow Triangle" (Esteem; Self-actualization)
- GCRC, IRB, DSMB, other roles in institutions
- Career paths in pharma and med dev industry
- Career paths in public health and govt policy

